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Preface

Preface

In this volume I present some examples of tangents to curves, tangent planes to surfaces, elementary
integrals and Extrema, cf. also Calculus 2b, Functions of Several Variables. Since my aim also has been
to demonstrate some solution strategy I have as far as possible structured the examples according to
the following form

A Awareness, i.e. a short description of what is the problem.

D Decision, i.e. a reflection over what should be done with the problem.

I Implementation, i.e. where all the calculations are made.

C Control, i.e. a test of the result.

This is an ideal form of a general procedure of solution. It can be used in any situation and it is not
linked to Mathematics alone. I learned it many years ago in the Theory of Telecommunication in a
situation which did not contain Mathematics at all. The student is recommended to use it also in
other disciplines.

One is used to from high school immediately to proceed to I. Implementation. However, examples and
problems at university level are often so complicated that it in general will be a good investment also
to spend some time on the first two points above in order to be absolutely certain of what to do in a
particular case. Note that the first three points, ADI, can always be performed.

This is unfortunately not the case with C Control, because it from now on may be difficult, if possible,
to check one’s solution. It is only an extra securing whenever it is possible, but we cannot include it
always in our solution form above.

I shall on purpose not use the logical signs. These should in general be avoided in Calculus as a
shorthand, because they are often (too often, I would say) misused. Instead of ∧ I shall either write
“and”, or a comma, and instead of ∨ I shall write “or”. The arrows ⇒ and ⇔ are in particular
misunderstood by the students, so they should be totally avoided. Instead, write in a plain language
what you mean or want to do.

It is my hope that these examples, of which many are treated in more ways to show that the solutions
procedures are not unique, may be of some inspiration for the students who have just started their
studies at the universities.

Finally, even if I have tried to write as careful as possible, I doubt that all errors have been removed.
I hope that the reader will forgive me the unavoidable errors.

Leif Mejlbro
17th October 2007
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 Tangents to curves

1 Tangents to curves

Eksempel 1.1 Find in each of the following cases an equation or a parametric description of the
tangent to the given curve at the given point.

1) The curve is given by x3 − y3 + 2x − 3y + 1 = 0 and the point is (1, 1).

2) The curve is given by xy − yx = 0 and the point is (2, 4).

3) The curve is given by r(t) = (cos t, sin t, et) and the point is (1, 0, 1).

4) The curve is given by r(t) = (t− sin t, 1− cost), and the point is
(π

2
− 1, 1

)
, [cf. Example 1.3.3]

5) The curve is given by x
2
3 + y

2
3 = 5

4 and the point is
(

1
8 , 1
)
.

6) The curve is given by r(t) =
(
ln t, cos(t − 1), 2t4 − t2

)
and the point is (0, 1, 1).

7) The curve is given by r(t) = (Arcsin t,Arctan(2t),Arccot(2t)) and the point is
(π

3
,
π

3
,
π

6

)
.

8) The curve is given by r(t) = (2 sin t,− cos t, 3t) and the point is (0, 1, 3π).
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A Find the tangent to a curve at a point.

D First check if the point lies on the curve. Find the slope of the curve at the point. Write down the
equation of the tangent. Notice that the case where the curve is given by an equation is treated
differently from a curve given a parametric description.

I 1) By putting (x, y) = (1, 1) into the equation we get 13 − 13 + 2 − 3 + 1 = 0, proving that (1, 1)
lies on the curve.

–0.5

0.5

1

y

–1 –0.5 0.5 1 1.5

x

Figur 1: The curve in 1).

When we differentiate the equation of the curve with respect to x we get

0 = −(3y2 + 3)
dy

dx
+ 3x2 + 2.

When we here put (x, y) = (1, 1), we get
dy

dx
=

5
6
, so the equation of the tangent becomes

y − 1 =
5
6
(x − 1).

2) By putting (x, y) = (2, 4) into the equation of the curve we get 24 − 42 = 0, proving that (2, 4)
lies on the curve. When we differentiate the equation of the curve with respect to x, we get

0 =
d

dx
(xy − yx) =

d

dx

(
ey ln x

)
− d

dx

(
ex ln y

)
= xy d

dx
(y lnx) − yx d

dx
(x ln y)

= xy

{
lnx · dy

dx
+

y

x

}
− yx

{
ln y +

x

y
· dy

dx

}
.

When we put (x, y) = (2, 4), we get

0 = 16
{

ln 2 · dy

dx
+ 2
}
− 16

{
2 ln 2 +

1
2

dy

dx

}
= 16

{(
ln 2 − 1

2

)
dy

dx
− (2 ln 2 − 2)

}
,

hence
dy

dx
=

2 ln 2 − 2
ln 2 − 1

2

= 4 · ln 2 − 1
2 ln 2 − 1

.

The equation of the tangent becomes

y − 4 = −4 · 1 − ln 2
2 ln 2 − 1

(x − 2).

 Tangents to curves
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1

2

3

4

y

1 2 3 4

x

Figur 2: The curve in 2); note that the curve contains a self intersection.

3) It is immediately seen that r(0) = (1, 0, 1), so the point lies on the curve. Furthermore,

–1

–0.5

0

0.5

1

–1

–0.5

0

0.5

1

0

5

10

15

20

Figur 3: The curve in 3.

r′(t) = (− sin t, cos t, et), r′(0) = (0, 1, 1),

so a parametric description of the tangent is

(x(u), y(u), z(u)) = r(0) + u · r′(0) = (1, 0, 1) + u(0, 1, 1), u ∈ R.

4) It follows immediately that r
(π

2

)
=
(π

2
− 1, 1

)
, proving that the point lies on the curve

corresponding to the value of the parameter t =
π

2
. Furthermore,

r′(t) = (1 − cos t, sin t), r′
(π

2

)
= (1, 1).

A parametric description of the tangent is

(x(u), y(u)) =
(π

2
, 1
)

+ u · (1, 1), u ∈ R.

 Tangents to curves
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0

0.5

1

1.5

2

1 2 3 4 5 6

Figur 4: The curve in 4.

5) It follows from

(
1
8

) 2
3

+ 1
2
3 =

(
1
2

)3· 23
+ 1 =

1
4

+ 1 =
5
4
,

that the point
(

1
8
, 1
)

lies on the curve.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

0.2 0.4 0.6 0.8 1 1.2 1.4

x

Figur 5: The curve in 5.

If we put f(x, y) = x2/3 + y2/3, then

�f(x, y) =
2
3

(
1
3
√

x
,

1
3
√

y

)
for x 	= 0 og y 	= 0,

and hence

�f

(
1
8
, 1
)

=
2
3
(2, 1),

which indicates the direction of the normal of the curve at the point. The direction of the
tangent is then perpendicular to the normal �f , e.g. (1,−2).

 Tangents to curves
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A parametric description of the tangent is

(x(t), y(t)) =
(

1
8
, 1
)

+ t (1,−2) =
(

t +
1
8
,−2t + 1

)
, t ∈ R.

This implies that t = x − 1
8
, so y = 1 − 2t = 1 − 2x +

1
4

=
5
4
− 2x. Finally, we can write the

equation of the tangent

y + 2x =
5
4
.

Alternatively the equation f(x, y) =
5
4

is differentiated with respect to x. Then

2
3

x− 1
3 +

2
3

y− 1
3

dy

dx
= 0 for x 	= 0 og y 	= 0.

 Tangents to curves
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At the point
(

1
8
, 1
)

we find the slope

dy

dx
= −

(y

x

) 1
3

= −2,

so the equation of the tangent becomes

y − 1 = −2
(

x − 1
8

)
= −2x +

1
4
,

i.e.

y + 2x =
5
4
.

Remark. The methods fail when either x = 0 or y = 0. This is in accordance with the fact
that we have cusps in the corresponding points of the curve. ♦

6) Putting t = 1 we get

r(1) = (ln 1, cos(1 − 1), 2 · 14 − 12) = (0, 1, 1),

so (0, 1, 1) lies on the curve. Furthermore,

5

10

15

20

25

0.6

0.7

0.8

0.9

1

–3

–2

–1

0

Figur 6: The curve in 6).

r′(t) =
(

1
t
,− sin(t − 1), 8t3 − 2t

)
, r′(1) = (1, 0, 6),

so a parametric description of the tangent is

(x(u), y(u), z(u)) = r(1) + u r′(1) = (0, 1, 1) + u (1, 0, 6).

7) If we choose t =
√

3
2

, we get by insertion,

r

(√
3

2

)
=

(
Arcsin

(√
3

2

)
,Arctan(

√
3),Arccot(

√
3)

)
=
(π

3
,
π

3
,
π

6

)
,

 Tangents to curves
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0.6
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1.4

0
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1
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0.4
0.6

0.8
1

1.2

Figur 7: The curve in 7).

so
(π

3
,
π

3
,
π

6

)
lies on the curve. Furthermore,

r′(t) =
(

1√
1 − t2

,
2

1 + 4t2
,− 2

1 + 4t2

)
,

so

r′
(√

3
2

)
=

⎛
⎝ 1√

1 − 3
4

,
2

1 + 4 · 3
4

,− 2
1 + 4 · 3

4

⎞
⎠ =

(
2,

1
2
,−1

2

)
,

and a parametric description of the tangent is

(x(u), y(u), z(u)) =
(π

3
,
π

3
,
π

6

)
+ u (4, 1,−1).

8) If we choose t = π we see that

r(π) = (2 sin π,− cos π, 3π) = (0, 1, 3π),

so (0, 1, 3π) lies on the curve. Furthermore,

r′(t) = (2 cos t, sin t, 3)

where

r′(π) = (2 cos π, sin π, 3) = (−2, 0, 3).

A parametric description of the tangent is

(x(u), y(u), z(u)) = (0, 1, 3π) + u (−2, 0, 3).

 Tangents to curves
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2
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10
12
14
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–1

–0.5

0.5

1

–2

–1

1

2

Figur 8: The curve in Example 1.1.8.

Eksempel 1.2 A curve is given by the parametric description

x = a{ln(1 + sin t) − ln cos t − sin t}, y = −a cos t, t ∈
[
0,

π

2

[
.

1) Prove that

dx

dt
=

a sin2 t

cos t
,

and then find the direction of the tangent of the curve in the point P (t) corresponding to the value
t > 0 of the parameter.

2) Find an equation of a parametric description of the tangent at P (t).

3) Finally find the length of the straight line from P (t) to the intersection of the tangent with the X
axis,

A Tangent for a curve, which is given by a parametric description.

D Follow the guidelines of the text.

1) By a differentiation,

dx

dt
= a

(
cos t

1 + sin t
+

sin t

cos t
− cos t

)
= a

(
cos t(1 − sin t)

1 − sin2 t
+

sin t

cos t
− cos t

)

= a

(
cos t(1 − sin t)

cos2 t
+

sin t

cos t
− cos t

)
= a

(
1 − sin t

cos t
+

sin t

cos t
− cos t

)

= a

(
1

cos t
− cos t

)
= a · 1 − cos2 t

cos t
= a · sin2 t

cos t
.

This gives us the direction of the tangent

r′(t) =
(

dx

dt
,
dy

dy

)
= a

(
sin2 t

cos t
, sin t

)
= a tan t (sin t, cos t)

for t ∈
]
0,

π

2

[
.

Notice that the latter form is very convenient, because it immediately gives us the vector
(sin t, cos t) of the direction.

 Tangents to curves
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I

–1

–0.8

–0.6

–0.4

–0.2

0

y

1 2 3 4

x

Figur 9: The curve in Example 1.2

2) From the result of 1) we get a parametric description of the tangent at the point P (t),

(x(u), y(u)) = a(ln(1 + sin t) − ln cos t − sin t,− cos t) + au (tan t) (sin t, cos t),

 Tangents to curves
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where t ∈
]
0,

π

2

[
, and where one may put the factor (tan t) into the parameter u, hence

obtaining an equivalent (and simpler) solution without the factor (tan t).

When we apply the variant above, we get⎧⎨
⎩

au · sin t · tan t = x − a{ln(1 + sin t) − ln cos t − sin t},

au · sin t = y + a cos t,

thus in particular,

tan t · (y + a cos t) = tan t · y + a sin t = au sin t · tan t

= x − a ln(1 + sin t) + a ln cos t + a sin t.

The equation of the tangent is obtained by a reduction,

(1) tan t · y = x − a ln(1 + sin t) + a ln cos t,

which can also be written in one of the two forms⎧⎨
⎩

y = cot t · {x − a ln(1 + sin t) + a ln cos t},

sin t · y = cos t · {x − a ln(1 + sin t) + a ln cos t}.

3) The intersection point of the tangent with the X axis is found by putting y = 0 into the
equation of the tangent and the solve the equation. Here we have two variants.

a) If we use the parametric description we get

y(u) = −a · cos t + au · sin t = 0,

which is fulfilled for u = cot t. Using this u we get

x(u) = a{ln(1 + sin t) − ln cos t − sin t + sin t} = a{ln(1 + sin t) − ln cos t}.

Since P (t) has the coordinates (x(0), y(0)) from the equation of the tangent, the length of
the straight line on the tangent between P (t) and the intersection point with the X axis is

L =
√

{x(0) − x(u)}2 − {y(0)}2

=
√

{ln(1+sin t)−ln cos t−sin t−ln(1+sin t)+ln cos t}2 + {−cos t}2

= a
√

sin2 t + cos2 t = a.

b) If we instead use the equation of the tangent, it follows from (1) that

0 = x − a ln(1 + sin t) + a ln cos t,

so the abscissa of the intersection point is given by

x = a{ln(1 + sin t) − ln cos t},

thus x − x0 = − sin t, and

L = a
√

{x − x0}2 + y2
0 = a

√
sin2 t + cos2 t = a.

 Tangents to curves
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Eksempel 1.3 There are below given some plane curves by a parametric description

x = r(t), t ∈ I.

Explain in each case why the curve is a C1-curve with r′(0) = 0. Then check whether the curve has a
cusp at the point r(0). If the curve does not have a cusp, then find another parametric description of
the curve,

x = R(u), u ∈ J,

such that u = 0 corresponds to t = 0, and such that R′(0) 	= 0.

1) r(t) = (t2, t3) for t ∈ R.

2) r(t) = (t3, t6) for t ∈ R.

3) r(t) = (t − sin t, 1 − cos t) for t ∈ [−π, π]. [Cf. Example 1.1.4].

4) r(t) =
(
cos3 t, sin3 t

)
for t ∈

[
−π

2
,
π

2

]
.

5) r(t) =
(
t3, sin2 t

)
for t ∈

[
−π

2
,
pi

2

]
.

A C1-curves with or without cusps.

D Follow the guidelines. One may also sketch the curve.

I 1) The coordinate functions of r(t) = (t2, t3), t ∈ R are clearly C∞-functions in t.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figur 10: The curve in 1).

Then by a differentiation,

r′(t) = (2t, 3t2) where r′(0) = 0.

The figure indicates that we have a cusp. However, one must never in situations like this trust

the figure 100 %. An argument is needed! Now,
dx

dt
changes its sign, when t goes through 0,

while
dy

dt
does not change its sign, and it goes also faster towards 0 than

dx

dt
. We therefore

conclude that we indeed have a cusp for t = 0

 Tangents to curves
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It is here possible to eliminate t, and one gets

x = y2/3, y ∈ R.

Remark. If instead one tries to express y by x, then we get the more confused expression
|y| = x3/2, due to the fact that the square root occurs latently. Always be careful, whenever the
square root enters a problem. “If one can handle the square root, then one can handle anything
inside mathematics.”

2) The coordinate functions of r(t) = (t3, t6), t ∈ R, are clearly C∞-functions in t.

0

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1

Figur 11: The curve in 2).

We get by a differentiation

r′(t) = (3t2, 6t5) where r′(0) = 0.

It follows immediately that y = t6 = (t3)2 = x2, so the curve is a parabola, which does not
have a cusp.

An obvious alternative parametric description is u = t3, by which u = 0 for t = 0, and

R′(u) = (u, u2), u ∈ R,

where

R′(u) = (1, 2u) and R′(0) = (1, 0) 	= 0.

3) Clearly, the coordinate functions of

r(t) = (t − sin t, 1 − cos t), t ∈ [−π, π],

are C∞-functions in t ∈ ] − π, π[.
The curve is a part of the cycloid with a cusp at 0. We get by a differentiation,

r′(t) = (1 − cos t, sin t) where r′(0) = 0.

Since
dx

dt
does not change its sign, while

dy

dt
changes its sign when we pass through t = 0, and

since

 Tangents to curves
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0

0.5

1

1.5

2

–3 –2 –1 1 2 3

Figur 12: The curve in 3).

1 − cos t =
1
2

t2 + t2ε(t)

tends faster towards zero than sin t = t + tε(t) for t → 0, we conclude that the curve has a
cusp.

 Tangents to curves
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4) The coordinate functions of r(t) = (cos3 t, sin3 t), t ∈
[
−π

2
,
π

2

]
, are clearly C∞-functions in the

open interval
]
−π

2
,
π

2

[
.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figur 13: The curve in 4).

The figure indicate that we may have a cusp for t = 0, i.e. at the point (1, 0).

Then by a differentiation,

r′(t) = 3(− cos2 t sin t, sin2 t cos t) where r′(0) = 0.

Since
dx

dt
changes its sign, while

dy

dt
does not for t → 0, and since

dy

dt
tends faster towards 0

than
dx

dt
for t → 0, we conclude again that the curve has a cusp.

5) The coordinate functions of r(t) = (t3, sin2 t) are clearly C∞-functions in the interval
]
−π

2
,
π

2

[
.

0

0.4

0.8

–4 –2 2 4

Figur 14: The curve in 5).

Then by a differentiation,

r′(t) = (3t2, 2 sin t cos t) = (3t2, sin 2t) where r′(0) = 0.
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The curve has a cusp for t = 0, because
dy

dt
changes its sign, while

dx

dt
does not, when we pass

through t = 0, and because
dx

dt
= 3t2 goes faster towards zero for t → 0 than

dy

dt
≈ 2t.

Remark. Since sin t ≈ t for small t, the curve lies in the neighbourhood of t = 0 close to

r̃(t) = (t3, t2) for |t| small.

Cf. 1). ♦

Eksempel 1.4 A space curve K is given by the parametric description

r(r) =
(
t2, e2t, 4 + t3

)
, t ∈ R.

1) Find a parametric description of the tangent to K at the point r(2).

2) Prove that this tangent intersects the Y axis at some point (0, β, 0), and find β.

A Tangent to a space curve.

D Standard methods.
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Figur 15: The curve K for t ∈ [1, 3] and its tangent at the point r(2). Notice the different scales on
the axes.

I 1) We get by a differentiation,

r′(t) =
(
2t, 2e2t, 3t2

)
, s̊a r′(2) =

(
4, 2e4, 12

)
.

Since r(2) =
(
4, e4, 12

)
, the parametric description of the tangent to K at the point r(2) is

(x(t), y(t), z(t)) = r(2) + t · r′(2)
=

(
4, e4, 12

)
+ t
(
4, 2e4, 12

)
=

(
4(t + 1), e4(2t + 1), 12(t + 1)

)
.
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2) It follows immediately that x(t) = z(t) = 0 for t = −1, hence

(x(−1), y(−1), z(−1)) =
(
0,−e4, 0

)
= (0, β, 0),

and we conclude that

β = −e4.

 Tangents to curves
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2 Tangent plane to a surface

Eksempel 2.1 Find in each of the following cases an equation of the tangent plane to the given
surface at the given point.

1) The surface is given by r(u, v) = (2u, u2 + v, v2), and the point is (0, 1, 1).

2) The surface is given by r(u, v) = u2 − v2, u + v, u2 + 4v), and the point is
(
−1

4
,
1
2
, 2
)

.

3) The surface is given by xy − 2xz + xyz = 6, and the point is (−3, 2, 1).

4) The surface is given by r(u, v) = (u + v, u2 + v2, u3 + v3) for u > v, and the point is (0, 2, 0)

5) The surface is given by cos x − cos y + sin z = 1, and the point is
(π

3
,
π

3
,
π

2

)
.

6) The surface is given by z2 + 2xz + 2yz + 4y = 0, and the point is
(

1,
1
2
,−1

)
.

7) The surface is given by z = Arctan(xy), and the point is
(
1, 1,

π

4

)
.

A Tangent plane to a given surface.

D First check that the given point lies on the surface.

If the surface is given by a parametric description, then calculate the normal vector

∂r
∂u

× ∂r
∂v

.

If the surface instead is given implicitly by f(x, y, z) = c, then it can be considered as a level
surface, so its normal vector is �f(x, y, z).

I 1) Clearly, the point corresponds to the values of the parameters u = 0 and v = 1.

1

2

3

4

0.5
1

1.5
2

2.5
3

–2

–1

1

2

Figur 16: The surface in 1).

Then by partial differentiations

∂r
∂u

= (2, 2u, 0) and
∂r
∂v

= (0, 1, 2v),
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so the normal vector is

∂r
∂u

(0, 1) × ∂r
∂v

(0, 1) = (2, 0, 0) × (0, 1, 2) =

∣∣∣∣∣∣
e1 e2 e3

2 0 0
0 1 2

∣∣∣∣∣∣ = (0,−4, 2).

The tangent plane is given by

0 · (x − 0) − 4(y − 1) + 2(z − 1) = 0,

hence by a rearrangement,

2y − z = 1.

2) We first check that
(
−1

4
,
1
2
, 2
)

lies on the surface. We that solve the equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u2 − v2 = −1
4
,

u + v =
1
2
,

u2 + 4v = 2.

When we divide the second equation into the first one we get

u − v = −1
2

and u + v =
1
2
,

thus u = 0 and v =
1
2
. These values solve the first two equations, and then we see by insertion

that the third one also holds. Thus we have proved that the point
(
−1

4
,
1
2
, 2
)

lies on the

surface corresponding to (u, v) =
(

0,
1
2

)
.

1
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Figur 17: The surface in 2).
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Then we get by partial differentiation,

∂r
∂u

= (2u, 1, 2u),
∂r
∂u

(
0,

1
2

)
= (0, 1, 0),

∂r
∂v

= (−2v, 1, 4),
∂r
∂v

(
0,

1
2

)
= (−1, 1, 4).

The normal vector is

∂r
∂u

(
0,

1
2

)
× ∂r

∂v

(
0,

1
2

)
= (0, 1, 0) × (−1, 1, 4) =

∣∣∣∣∣∣
e1 e2 e3

0 1 0
−1 1 4

∣∣∣∣∣∣ = (4, 0, 1).

The tangent plane is given by

4
(

x +
1
4

)
+ 0 ·

(
y − 1

2

)
+ 1 · (z − 2) = 0,

which is reduced to

4x + z = 1.

3) This is an implicitly given surface. Putting (x, y, z) = (−3, 2, 1) into the left hand side of the
equation we get

−3 · 2 − 2(−3) · 1 + 3 · 2 · 1 = −6 + 6 + 6 = 6,

so the point lies on the surface.
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–1.05
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–0.95

1
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2.5

3

y

–4

–3.5

–3

–2.5

–2

x

Figur 18: The surface in 3).

The gradient is given by

�f(x, y, z) = (y − 2z, x + 3z,−2x + 3y),

hence

�f(−3, 2, 1) = (2 − 2,−3 + 3, 606) = (0, 0, 12).

Thus a normal vector is (0, 0, 1), and the tangent plane is given by

z = 1.
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4) If (0, 2, 0) lies on the surface we must have⎧⎨
⎩

u + v = 0,
u2 + v2 = 2,
u3 + v3 = 0,

where the solution should also satisfy u > v. It is easily seen that (u, v) = (1,−1) is a solution.

–2

2

4

6

8

1
2

3

4
5

6

–1.5
–1

–0.5
0

0.5
1

1.5

Figur 19: The surface of 4).
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Remark. In the present formulation of the example one does not have to check whether there
are other possible values of the parameters, which can be used instead. For completeness we
prove that there actually are no other values. This follows from

0 = (u + v)2 = (u2 + v2) + 2uv = 2 + 2uv,

thus uv = −1. This implies that u and v are solutions of the equation of second degree

λ2 − (u + v)λ + uv = λ2 − 0 · λ − 1 = λ2 − 1 = 0,

i.e. λ = ±1. Since u > v, we see that (u, v) = (1,−1) is the only solution. ♦.

Now,

∂r
∂u

= (1, 2u, 3u2),
∂r
∂u

(1,−1) = (1, 2, 3),

∂r
∂v

= (1, 2v, 3v2),
∂r
∂v

(1,−1) = (1,−2, 3).

A normal vector is

∂r
∂u

(1,−1) × ∂r
∂v

= (1, 2, 3) × (1,−2, 3) =

∣∣∣∣∣∣
e1 e2 e3

1 2 3
1 −2 3

∣∣∣∣∣∣ = 4(3, 0,−1).

The equation of the tangent plane is

z = 3x.

5) When (x, y, z) =
(π

3
,
π

3
,
π

2

)
is put into the left hand side of the equation, we get

f
(π

3
,
π

3
,
π

2

)
= cos

π

3
− ·π

3
+ sin

π

2
= 1,

proving that the point lies on the surface.
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Figur 20: The surface in 5).
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The gradient is

�f(x, y, z) = (− sin x, sin y, cos z)

and

�f
(π

3
,
π

3
,
π

2

)
=
(
− sin

π

3
, sin

π

3
, cos

π

2

)
= − sin

π

3
· (1,−1, 0).

A convenient normal of the surface at the point is therefore (1,−1, 0), and a tangent plane is

0 = (1,−1, 0) ·
(
x − π

3
, y − π

3
, z − π

2

)
= x − π

3
−
(
y − π

3

)
= x − y,

i.e.

y = x.

6) When (x, y, z) =
(

1,
1
2
,−1

)
is put into the left hand side of the equation we get

(−1)2 + 2 · 1 · (−1) + 2 · 1
2
· (−1) + 4 · 1

2
= 1 − 2 − 1 + 2 = 0,

proving that the point
(

1,
1
2
,−1

)
lies on the surface.
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Figur 21: The surface in 6).

It follows from

�F = (2z, 2z + 4, 2z + 2x + 2y),

that

�F

(
1,

1
2
,−1

)
= (−2,−2 + 4,−2 + 2 + 1) = (−2, 2, 1)

is perpendicular to the surface at the point
(

1,
1
2
,−1

)
.
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The tangent equation now becomes

0 = �F

(
1,

1
2
,−1

)
·
(

x − 1, y − 1
2
, z + 1

)

= −2(x − 1) + 2
(

y − 1
2

)
+ (z + 1)

= −2x + 2y + z + 2.

7) The equation is equivalent to

F (x, y, z) = Arctan(x, y) − z = 0.

If we put (x, y, z) =
(
1, 1,

π

4

)
, we get

F
(
1, 1,

π

4

)
= Arctan 1 − π

4
= 0,

and
(
1, 1,

π

4

)
lies on the surface.
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Figur 22: The surface of 7).

Now

�F =
(

y

1 + (xy)2
,

x

1 + (xy)2
,−1

)
,

and

�F
(
1, 1,

π

4

)
=

1
2
(1, 1,−2),

so the equation of the tangent plane becomes

0 = 2 � F
(
1, 1,

π

4

)
·
(
x − 1, y − 1, z − π

4

)
= (1, 1,−2) ·

(
x − 1, y − 1, z − π

4

)
= x − 1 + y − 1 − 2z +

π

2
,
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hence by a rearrangement,

x + y − 2z = 2 − π

2
.

Eksempel 2.2 Let F be an hyperboloid with two nets, given by

x2

a2
− y2

b2
− z2

c2
= 1.

Consider F as a level surface and find an equation of the tangent plane of F through the point (ξ, η, ζ).

A Tangent plan for a level surface.

D Find the gradient and set up the equation of the tangent plane. We shall need that (ξ, η, ζ) lies on
the surface.

 Tangent plane to a surface
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I If we put

F (x, y, z) =
x2

a2
− y2

b2
− z2

c2
,

we see that the hyperboloid F can be considered as the level surface F (x, y, z) = 1.

Now let (ξ, η, ζ) ∈ F , i.e.

ξ2

a2
− η2

b2
− ζ2

c2
= 1.

The gradient in (ξ, η, ζ) is

�F (ξ, η, ζ) = 2
(

ξ

a2
,− η

b2
,− ζ

c2

)
,

so the equation of the tangent plane is

0 =
1
2
� F (ξ, η, ζ) · (x − ξ, y − η, z − ζ) =

ξx − ξ2

a2
− ηy − η2

b2
− ζz − ζ2

c2
,

hence by a rearrangement

ξx

a2
− ηy

b2
− ζz

c2
=

ξ2

a2
− η2

b2
− ζ2

c2
= 1.

Thus the equation of the tangent plane at (ξ, η, ζ) ∈ F is

ξx

a2
− ηy

b2
− ζz

c2
= 1.

Eksempel 2.3 Let F be that part of the surface of equation xyz = 1 which lies in the first octant.

1) Find an equation of the tangent plane T of F at the point (ξ, η, ζ) on the surface.

2) Find the intersection points between T and the coordinate axes.

3) Find the volume of the tetrahedron, which is bounded by T and the three coordinate planes.

A Tangent plane of a level surface.

D Find the gradient and the the tangent plane.

I 1) When F (x, y, z) = xyz, the F is the level surface F (x, y, z) = 1 in the first octant.

If (ξ, η, ζ) ∈ F , then

ηζ =
1
ξ
, ζξ =

1
η
, ξη =

1
ζ
,

and the gradient is here

�F (ξ, η, ζ) = (ηζ, ζξ, ξη) =
(

1
ξ
,
1
η
,
1
ζ

)
.
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The equation of the tangent plane becomes

0 = �F (ξ, η, ζ) · (x − ξ, y − η, z − ζ) =
x

ξ
− 1 +

y

η
− 1 +

z

ζ
− 1,

i.e.
x

ξ
+

y

η
+

z

ζ
= 3,

or alternatively,

xηζ + yξζ + zξη = 3.

2) The X axis is characterized by y = 0 and z = 0, so the intersection point is (3ξ, 0, 0).

We get analogously (0, 3η, 0) on the Y axis and (0, 0, 3ζ) on the Z axis.

3) The volume is by the method of sections given by
∫ 3ζ

0
A(z) dz, where A(z) denotes the area

of a triangle which is cut out of the tetrahedron by a plane, parallel to the XY plane at the
height z.

At the height z = 0 we have

A(0) =
9
2

ξη.

By the similarity we then get in general

A(z) =
9
2

ξη

(
1 − z

3ζ

)2

, z ∈ [0, 3ζ].

Finally, by insertion and calculation of the integral we get the volume

V =
∫ 3ζ

0

A(z) dz =
9
2

ξη

∫ 3ζ

0

(
1 − z

3ζ

)2

dz

[
t =

z

3ζ

]

=
9
2

ξη · 3ζ
∫ 1

0

(1 − t)2dt =
27
2

ξηζ

∫ 1

0

u2du

=
27
2

· 1 · 13 =
9
2
.

We note that the volume is constant =
9
2
, no matter which point (ξ, η, ζ) ∈ F we have chosen.
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Eksempel 2.4 The surface F is given by the equation x4 + y4 + 2z2 = 19. Find an equation of the
tangent plane of F through the point (2, 1,−1).

A Tangent plane.

D First check that (2, 1,−1) lies on the surface. Then find a normal.
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Figur 23: Part of the surface in the neighbourhood of the point (2, 1,−1).

I It follows from

24 + 14 + 2(−1)2 = 16 + 1 + 2 = 19,

that (2, 1,−1) lies on F . Then

N(x, y, z) = (4x3, 4y3, 4z) = 4(x3, y3, z),

and

N(2, 1,−1) = 4(8, 1,−1),

so the equation of the tangent plane is

0 =
1
4

N(2, 1,−1) · (x − 2, y − 1, z + 1) = 8(x − 2) + (y − 1) − (z + 1),

thus by a reduction

8x + y − z = 18.

Eksempel 2.5 The surface F is given by the equation

x3 + y3 + z3 + 6 = 0.

Prove that the straight line given by x = 1 and y = 1 intersects F in a single point P , and then find
an equation of the tangent plane of F at P .

 Tangent plane to a surface
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Figur 24: The surface F in the neighbourhood of P . Note that the coordinate system is translated
along the Z axis, so the origo does not occur on the figure.

A Tangent plane.

D Either exploit the geometric meaning of �F , or find two tangents the cross products of which gives
a normal.

I By putting x = y = 1 we get

0 = 1 + 1 + z3 + 6 = z3 + 8 = (z + 2)(z2 − 2z + 4) = (z + 2){(z − 1)2 + 3}.

It follows that z = −2 is the only real solution, so the line of the parametric description r(z) =
(1, 1, z) does only intersect the surface in the point P : (1, 1,−2) ∈ F .

We shall find the tangent plane in two ways.

First variant. If we put F (x, y, z) = x3 + y3 + z3 + 6, then �F indicates the direction in which
the increase of F is largest, i.e. �F is a normal to the surface F (x, y, z) = C at the surface
point.

We find

�F = 3(x2, y2, z2), �F (1, 1,−2) = 3(1, 1, 4),

so an equation of the tangent plane is e.g. given by

0 =
1
3

� F (1, 1,−2) · (x − 1, y − 1, z + 2)

= (1, 1, 4) · (x − 1, y − 1, z + 2)
= x − 1 + y − 1 + 4z + 8 = x + y + 4z + 6,

thus by a rearrangement

x + y + 4z = −6.

Second variant. A parametric description of the surface F is in a neighbourhood of the point
(1, 1,−2) given by

r(u, v) =
(
u, v,− 3

√
6 + u3 + v3

)
, (u, v) ∈ K((1, 1,−2); r).
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The parameter curves have the tangents

∂r
∂u

=

(
1, 0,−

{
u

3
√

6 + u3 + v3

}2
)

,
∂r
∂v

=

(
0, 1,−

{
v

3
√

6 + u3 + v3

}2
)

.

At the point (1, 1,−2) we get the tangents

r′u(1, 1,−2) =
(

1, 0,−1
4

)
og r′v(1, 1,−2) =

(
0, 1,−1

4

)
.

Then a parametric description of the tangent plane is given by

r(u, v) = (x, y, z) = (1, 1,−2) + u

(
1, 0,−1

4

)
+ v

(
0, 1,−1

4

)

=
(

u + 1, v + 1,−1
4

(u + v + 8)
)

, (u, v) ∈ R
2.
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When we eliminate u and v we get

z = −1
4

(u + v + 8) = −1
4
{(u + 1) + (v + 1) + 6} = −1

4
(x + y + 6),

hence by a rearrangement

x + y + 4z = −6.

Remark. Here we might alternatively have found the normal instead,

N(1, 1,−2) = r′u(1, 1,−2) × r′v(1, 1,−2).

The details are left to the reader. ♦

Eksempel 2.6 Given the function

f(x, y, z) = x2 − 4y2 + 4x + 8y − z, (x, y, z) ∈ R
3,

and the level surface F of the equation

f(x, y, z) = 12.

1) Indicate the type of the surface and its top point.

2) Find �f(2, 0, 0), and set up an equation of the tangent plane of F at the point (2, 0, 0).

A Level surface and tangent plane.

D Rewrite the equation of the level surface to one of the generic forms. The tangent plane is found
by the standard method.

–25

–20

–15

–10

–1

0

1

2

3

t

–4

–3

–2

–1

0

s

Figur 25: Part of the level surface F .

I 1) The equation of the level surface

f(x, y, z) = x2 − 4y2 + 4x + 8y − z = (x + 2)2 − 4(y − 1) − z = 12

is rewritten as

z + 12 = (x + 2)2 − 4(y − 1)2,

and we see that F is an hyperbolic paraboloid of top point (−2, 1,−12).
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2) It follows from

�f(x, y, z) = (2x + 4,−8y + 8,−1)

that the normal of the surface at the point (2, 0, 0) is

�f(2, 0, 0) = (8, 8,−1).

Since

f(2, 0, 0) = 4 − 4 · 02 + 4 · 2 + 8 · 0 − 0 = 12,

we see that (2, 0, 0) lies on the surface.

The equation of the tangent plane is

0 = �f(2, 0, 0) · (x − 2, y − 0, z − 0) = (8, 8,−1) · (x − 2, y, z) = 8x − 16 + 8y − z,

so by a rearrangement,

z = 8x + 8y − 16.

Eksempel 2.7 Let α be a constant. Consider the surface Fα given by the equation

x2 + 4y2 − z2 + α z4 = α + α2.

Let Tα denote the tangent plane of Fα at the point
(

α,
1
2
, 1
)

on the surface.

1) Find an equation of Tα.

2) Check if α can be chosen such that the point (1, 1, 0) belongs to the plane Tα.

3) Prove that there exists a value of α, for which Fα is a conic section and indicate its type and
centrum.

A Tangent plane; conic section.

D Check if
(

α,
1
2
, 1
)

lies on the surface. Find a normal and prove that this can always be chosen

	= 0. Set up an equation of the tangent plane. Insert (1, 1, 0) and solve with respect to α. Finally,
find α, such that every term is at most a square.

I 1) If we put (x, y, z) =
(

α,
1
2
, 1
)

, then

α2 + 4 · 1
4
− 1 + α = α2 + α,

and the point
(

α,
1
2
, 1
)

lies on the surface Fα.
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Figur 26: The surface Fα for α = 1 in the neighbourhood of the point (1, 1, 0), cf. 2).
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Figur 27: The surface Fα for α = −2 in the neighbourhood of the point (1, 1, 0), cf. 2).

In general a normal is given by

�F = (2x, 8y,−2 < +4αz3) = 2(x, 4y,−z + 2αz3).

By removing the factor 2 and inserting
(

α,
1
2
, 1
)

we get

n = (α, 2,−1 + 2α) 	= 0 for every α.

Since n is perpendicular to the tangent plane, the equation of the tangent plane becomes

0 = n ·
(

x − α, y − 1
2
, z − 1

)

= α(x − α) + 2
(

y − 1
2

)
+ (−1 + 2α)(z − 1)

= αx + 2y + (2α − 1)z − α2 − 1 + 1 − 2α
= αx + 2y + (2α − 1)z − α2 − 2α,

which is rewritten as

αx + 2y + (2α − 1)z = α2 + 2α.
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Figur 28: The conic section in 3), i.e. for α = 0.

2) If we put (x, y, z) = (1, 1, 0) into the equation of the tangent plane, we get the following equation
of second order in α,

α2 + 2α = α + 2 + 0, i.e. α2 + α − 2 = 0,

the roots of which are α = 1 and α = −2. For these values of α the point (1, 1, 0) lies in Tα.

3) When we consider conic sections, the corresponding equation must at most contain terms of
degree two. We are therefore forced to put α = 0, corresponding to

x2 + 4y2 − z2 = 0, i.e. z2 = x2 + 4y2.

This is the equation of a cone of centrum (0, 0, 0) and the Z axis as axis.

 Tangent plane to a surface

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

http://bookboon.com/count/pdf/346350/38


Download free books at BookBooN.com

Calculus 2c-3

 

39  

Eksempel 2.8 Given the function

f(x, y, z) = ln
(
16 − x2 − 2y2 − 4z2

)
, (x, y, z) ∈ A,

where A is given by the inequality

x2 + 2y2 + 4z2 < 16.

1. Indicate the boundary ∂A and explain why ∂A is a conic section; find the name of this and indicate
its half axes.

2. Check if A is

1) open,

2) closed,

3) star shaped.

3. Find the gradient �f(x, y, z).

Let F be that level surface of f , which contains the point (2, 1, 1).

4. Find the value of f(x, y, z) for (x, y, z) ∈ F .

5. Find an equation of the tangent plane of F at the point (2, 1, 1).

A Conic section; level surface; tangent plane.

D Follow the guidelines of the text.

I 1) It follows from the continuity of the function that the equation of the boundary ∂A is

x2 + 2y2 + 4z2 = 16,

hence by a norming (division by 16),

(x

4

)2

+
(

y

2
√

2

)2

+
(z

2

)1

= 1.

This normed form shows that ∂A is a conic section, in fact an ellipsoid of centrum (0, 0, 0) and
half axes 4, 2

√
2 and 2 along the X axis, the Y axis and the Z axis respectively.

2) Since a polynomial is continuous and since we have “sharp” inequality signs, we conclude that
A is open. Hence A is an open ellipsoid, therefore convex, and thus also star shaped. The set
A is clearly not closed.

3) the gradient of f in A is

�f(x, y, z) =
1

16 − x2 − 2y2 − 4z2
(−2x,−4y,−8z).

4) By insertion we see that if (x, y, z) ∈ F , then

f(x, y, z) = f(2, 1, 1) ln(16 − 4 − 2 − 4) = ln 6.
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5) We get at the point (2, 1, 1) that

�f(2, 1, 1) =
1
6

(−4,−4,−8) = −2
3

(1, 1, 2).

The gradient is always perpendicular to the tangent plane, so an equation of the tangent plane
of F at the point (2, 1, 1) is given by

0 = −3
2

� f(2, 1, 1) · (x − 2, y − 1, z − 1)

= (1, 1, 2) · (x − 2, y − 1, z − 1)
= x − 2 + y − 1 + 2z − 2
= x + y + 2z − 5,

thus after a rearrangement,

x + y + 2z = 5.
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3 Simple integrals in several variables

Eksempel 3.1 Find for every of the given vector fields first the domain and then every indefinite
integral, whenever such an integral exists.

1) V(x, y) = (x, y).

2) V(x, y) = (y, x).

3) V(x, y) =
(

1
x + y

,
−x

y(x + y)

)
.

4) V(x, y) = (3x2 + 2y2, 2xy).

5) V(x, y) =
(

3x2 + y2 +
y

1 + x2y2
, 2xy − 4 +

x

1 + x2y2

)
.

6) V(x, y) =

⎛
⎜⎜⎝

−2x
2 − x2 − 2y2

+
−x√

2 − x2 − 2y2

−4y
2 − x2 − 2y2

+
−2y√

2 − x2 − 2y2

⎞
⎟⎟⎠.

7) V(x, y) =
(

x

(x − y)2
,

−x2

y(x − y)2

)
.

8) V(x, y) =
(

2x(1 − ey)
(1 + x2)2

,
ey

1 + x2

)
.

9) V(x, y) = (sin y + y sin x + x, cos x + x cos y + y).

A Gradient fields; integrals.

D First find the domain. Then check if we are dealing with a differential, or use indefinite integration.
Another alternative is to integrate along a step line within the domain.

I 1) The vector field V(x, y) = (x, y) is defined in the whole of R
2.

a) First method. We get by only using the rules of calculation,

V(x, y) · (dx, dy) = xdx + ydy = d

{
1
2
(x2 + y2)

}
,

which shows that V(x, y) has an indefinite integral,

F (x, y) =
1
2
(x2 + y2).

b) Second method. We get by indefinite integration,

F1(x, y) =
∫

x dx =
1
2

x2,

hence

y − ∂

∂y
F1(x, y) = y, dvs. F2(x, y) =

1
2

y2.

An integral is

F (x, y) = F1(x, y) + F2(x, y) =
1
2
(x2 + y2).
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c) Third method. When we integrate along the step line

C : (0, 0) −→ (x, 0) −→ (x, y),

which lies in the domain, we get the candidate∫
C

V · (dx, dy) =
∫ x

0

t dt +
∫ y

0

t dt =
1
2

x2 +
1
2

y2.

d) Test. The test is always mandatory by the latter method; though it is not necessary in the
two former ones, it is nevertheless highly recommended. Obviously,

�F (x, y) = (x, y) = V(x, y),

and we have checked our result.

2) The vector field V(x, y) = (y, x) is defined in R
2.

a) First method. It follows by the rules of calculations that

V(x, y) · (dx, dy) = ydx + xdy = d(xy),

which shows that V(x, y) has an integral

F (x, y) = xy.

b) Second method. We get by indefinite integration

F1(x, y) =
∫

y dx = xy,

thus

x − ∂

∂y
F1(x, y) = x − x = 0, i.e. F2(x, y) = 0.

An integral is

F (x, y) = xy.

c) Third method. When we integrate along the step line

C : (0, 0) −→ (x, 0) −→ (x, y),

which lies in the domain, then∫
C

V · (dx, dy) =
∫ x

0

0 dt +
∫ y

0

x dt = xy.

d) Test (which is mandatory by the third method). Clearly, �F = (y, x), so the calculations
are all right.

3) The vector field V(x, y) =
(

1
x + y

,
−x

y(x + y)

)
is defined in the set

A = {(x, y) | y 	= 0, y 	= −x}.

This set is the union of four angular spaces, where one considers each of these separately when
we solve the problem.
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a) First method. Here we get by some clever reductions,

1
x + y

dx − x

y(x + y)
=

y2

y(x + y)

(
1
y

dx − x

y2
dy

)
=

1

1 +
x

y

d

(
x

y

)
= d ln

∣∣∣∣1 +
x

y

∣∣∣∣ ,
so an integral in each of the four domains is

F (x, y) = ln
∣∣∣∣1 +

x

y

∣∣∣∣ = ln |x + y| − ln |y|.

b) Second method. We get by indefinite integration,

F1(x, y) =
∫

1
x + y

dx = ln |x + y|,

thus

− x

y(x + y)
− ∂F1

∂y
= − x

y(x + y)
− 1

x + y
= −1

y

x + y

x + y
= −1

y
.

Hence by integration, F2(x, y) = − ln |y|, so an integral is

F (x, y) = F1(x, y) + F2(x, y) = ln |x + y| − ln |y| = ln
∣∣∣∣1 +

x

y

∣∣∣∣ .
c) Third method. In this case the integration along a step line is fairly complicated, because

we shall choose a point and a step curve in each of the four angular spaces. It is possible to
go through this method of solution, but since it is fairly long, we shall here leave it to the
reader.

d) Test. Here

�F (x, y) =
(

1
x + y

,
1

x + y
− 1

y

)
=
(

1
x + y

,− x

y(x + y)

)
= V(x, y),

so our calculations are correct.

4) The vector field V(x, y) = (3x2 + 2y2, 2xy) is defined in R
2.

a) First method Since
V(x, y) · (dx, dy) = (3x2 + 2y2)dx + 2xy dy

= d(x3) + y2dx + (y2dx + xd(y2))
= d(x3 + xy2) + y2dx,

cannot be written as a differential, we conclude that V(x, y) is not a gradient field and no
integral exists.

b) Second method. We get by indefinite integration,

F1(x, y) =
∫

(3x2 + 2y2)dx = x3 + 2xy2,

and accordingly,

2xy − ∂F1

∂y
= 2xy − 4xy = −2xy.
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This expression depends on x, which it should not if the field is a gradient field. Therefore,
we conclude that the field is not a gradient field, and also that there does not exist any
integral.

If one does not immediately see this, we get by the continuation,

F2(x, y) = −
∫

2xy dy = −xy2,

so a candidate of the integral is

F (x, y) = F1(x, y) + F2(x, y) = x3 + xy2.

Then the test below will prove that this is not an integral.
c) Third method. Integration along the step curve

C : (0, 0) −→ (x, 0) −→ (x, y),

 Simple integrals in several variables
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in the domain gives∫
C

V · (dx, dy) =
∫ x

0

(3t2 + 0)dt +
∫ y

0

2xt dt = x3 + xy2,

in other words the same candidate as by the second method.
d) Test. We find

�F (x, y) = (3x2 + y2, 2xy) 	= V(x, y),

so the test is not successful. The field is not a gradient field.
5) The vector field

V(x, y) =
(

3x2 + y2 +
y

1 + x2y2
, 2xy − 4 +

x

1 + x2y2

)

is defined in R
2.

a) First method. Here

V · dx = 3x2dx + (y2dx + 2xydy) − 4dy +
1

1 + x2y2
(ydx + xdy)

= d(x3 = +d(xy2) − d(4t) +
1

1 + x2y2
d(xy)

= d{x3 + xy2 − 4y + Arctan(xy)},
so V(x, y) has an integral given by

F (x, y) = x3 + xy2 − 4y + Arctan(xy).

b) Second method. We get by an indefinite integration,

F1(x, y) =
∫ {

3x2 + y2 +
y

1 + x2y2

}
dx = x3 + xy2 + Arctan(xy),

hence
∂F1

∂y
= 2xy +

x

1 + x2y2
,

and whence

2xy − 4 +
x

1 + x2y2
− ∂F1

∂y
= −4.

It follows immediately that F2(y) = −4y. The vector field is a gradient field with an integral

F (x, y) = F1(x, y) + F2(y) = x3 + xy2 − 4y + Arctan(xy).

c) Third method. If we integrate along the step curve

C : (0, 0) −→ (x, 0) −→ (xy),

entirely in the domain, we get∫
C

V · dx =
∫ x

0

(3t2 + 0 + 0)dt +
∫ y

0

{
2xt − 4 +

x

1 + x2t2

}
dt

= x3 + {xy2 − 4y + Arctan(xy)}.
As mentioned above one shall always test the result by this method! The test is not necessary
in the two former methods, but it is nevertheless highly recommended.
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d) Test. By some routine calculations,

�F (x, y) =
(

3x2 + y2 − 0 +
y

1 + (xy)2
, 0 + 2xy − 4 +

x

1 + (xy)2

)
= V(x, y).

We get the correct answer, so V(x, y) is a gradient field and an integral is

F (x, y) = x3 + xy2 − 4y + Arctan(xy).

6) The vector field

V(x, y) =

⎛
⎜⎜⎝

−2x
2 − x2 − 2y2

+
−x√

2 − x2 − 2y2

−4y
2 − x2 − 2y2

+
−2y√

2 − x2 − 2y2

⎞
⎟⎟⎠

is defined in the open ellipsoidal disc

A =

{
(x, y)

∣∣∣∣∣
(

x√
2

)2

+ y2 < 1

}

of centrum (0, 0) and half axes
√

2 and 1.

–1
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0

0.5

1

y
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x

Figur 29: The open domain of 6).

a) First method. By collecting terms which look more or less the same we get

V · dx =
1

2 − x2 − 2y2
(−2xdx − 4ydy) +

1√
2 − x2 − 2y2

(−xdx − 2ydy)

=
1

2 − x2 − 2y2
d(2 − x2 − 2y2) +

1
2

1√
2 − x2 − 2y2

d(2 − x2 − 2y2)

= d
(
ln |2 − x2 − 2y2|

)
+ d

(√
2 − x2 − 2y2

)
= d

{
ln(2 − x2 − 2y2) +

√
2 − x2 − 2y2

}
for (x, y) ∈ A.

This vector field is a gradient field, an an integral in A is given by

F (x, y) = ln(2 − x2 − 2y2) +
√

2 − x2 − 2y2.
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b) Second method. We get by indefinite integration,

F1(x, y) =
∫ { −2x

2 − x2 − 2y2
+

−x√
2 − x2 − 2y2

}
dx

= ln |2 − x2 − 2y2| +
√

2 − x2 − 2y2

= ln(2 − x2 − 2y2) +
√

2 − x2 − 2y2, (x, y) ∈ A,

hence

∂F1

∂y
=

−4y
2 − x2 − 2y2

+
−2y√

2 − x2 − 2y2
= g(x, y).

Thus an integral in A is given by

F (x, y) = F1(x, y) = ln(2 − x2 − 2y2) +
√

2 − x2 − 2y2,

and the vector field is a gradient field.
c) Since A is convex and symmetric about e.g. the X axis, the step curve

C : (0, 0) −→ (x, 0) −→ (x, y)

lies totally inside A for each (x, y) ∈ A. By an integration along this step curve we get∫
C

V · dx =
∫ x

0

{ −2t
2 − t2 − 0

+
−t√

2 − t2 − 0

}
dt

+
∫ y

0

{ −4t
2 − x2 − 2t2

+
−2t√

2 − x2 − 2t2

}
dt

= {ln(2 − x2) − ln 2} + {
√

2 − x2 −
√

2}
+{ln(2 − x2 − 2y2) − ln(2 − x2)}
+{
√

2 − x2 − 2y2 −
√

2 − x2}
= ln(2 − x2 − 2y2) +

√
2 − x2 − 2y2 − ln 2 −

√
2.

Here we can of course neglect the constant − ln 2 −
√

2.
d) Test. We get by standard calculations

�F =

(
−2x

2−x2−2y2
+

−x√
2−x2−2y2

,
−4y

2−x2−2y2
+

−2y√
2−x2−2y2

)
= V(x, y).

The test is OK, and V(x, y) is a gradient field with the obtained function F (x, y) as an
integral.

7) The vector field

V(x, y) =
(

x

(x − y)2
,

−x2

y(x − y)2

)

is defined in the set

A = {(x, y) | y 	= 0, y 	= x},

with four angular spaces as its components.
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a) First method. Since y 	= 0 in A, it seems natural to put y2 outside the denominator. Then

V · dx =
x

(x − y)2
dx − x2

y(x − y)2
dy =

x
y(

x
y − 1

)2 · 1
y

dx +
x
y(

x
y − 1

)2

(
− x

y2

)
dy

=
x
y(

x
y − 1

)2

{
1
y

dx + xd

(
1
y

)}
=

x
y − 1 + 1(

x
y − 1

)2 d

(
x

y

)

=

⎧⎨
⎩ 1

x
y − 1

+
1(

x
y − 1

)
⎫⎬
⎭ d

(
x

y

)
= d

{
ln
∣∣∣∣xy − 1

∣∣∣∣− 1
x
y − 1

}
.

It follows that V(x, y) has an integral, e.g.

F (x, y) = ln
∣∣∣∣x − y

y

∣∣∣∣+ y

y − x
,

defined in each of the four connected components of A. Furthermore, V(x, y) is a gradient
field.
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b) Second method. We get by indefinite integration in A that

F1(x, y) =
∫

x

(x − y)2
dx =

∫
x − y + y

(x − y)2
dx =

∫
1

x − y
dx + y

∫
1

(x − y)2
dx

= ln |x − y| − y

x − y
,

whence

∂F1

∂y
=

−1
x − y

− 1
x − y

− y

(x − y)2
=

−2x + 2y − y

(x − y)2
=

−2x + y

(x − y)2
,

so

− x2

y(x − y)2
− ∂F1

∂y
= −−x2 + 2xy − y2

y(x − y)2
=

−(x − y)2

y(x − y)2
= −1

y
,

and thus by an integration, F2(y) = − ln |y|, so an integral is

F (x, y) = ln |x − y| − y

x − y
− ln |y| = ln

∣∣∣∣x − y

y

∣∣∣∣− y

x − y
.

c) The third method can also be applied here but it is fairly difficult due to the structure
of A, so here follows only a short description of the method. Choose a point in each of the
four connected components. Then a geometric analysis shows that one should in the two
angular spaces in which the angle is acute first integrate horizontally and then vertically,
so the integration path has here the form

C : (x0, y0) −→ (x, y0) −→ (x, y),

because we have to stay inside the connected component.
In the other two angular spaces this path of integration may go beyond the connected
component (sketch examples on a figure), so we introduce instead the following path of
integration

C : (x0, y0) −→ (x0, y) −→ (x, y),

i.e. we first integrate vertically and then horizontally.
This is clearly a tedious procedure, and on the top of it one should also test the result before
we can recognize the result as being correct.

d) Test.

�F (x, y) =

(
1
y

x−y
y

+
y

(x − y)2
,

1
x−y

y

·
(
− x

y2

)
− x − y + y

(x − y)2

)

=
(

x − y

(x − y)2
+

y

(x − y)2
,− x

y(x − y)
− x

(x − y)2

)

=
(

x

(x − y)2
,

−x

y(x − y)2
(x − y + y)

)

=
(

x

(x − y)2
,− x2

y(x − y)2

)
= V(x, y),

so we have checked that V(x, y) is indeed a gradient field with F (x, y) as its integral.
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8) The vector field

V(x, y) =
(

2x(1 − ey)
(1 + x2)2

,
ey

1 + x2

)

is defined in R
2.

a) First method. We get by some clever manipulation

V · dx =
1 − ey

(1 + x2)2
· 2xdx +

1
1 + x2

eydy = (1 − ey)
1

(1 + x2)2
d(x2) +

1
1 + x2

d(ey)

= (ey − 1)d
(

1
1 + x2

)
+

1
1 + x2

d(ey − 1) = d

(
ey − 1
1 + x2

)
,

so an integral is

F (x, y) =
ey − 1
1 + x2

,

and V(x, y) is a gradient field.
b) Second method. We get by indefinite integration,

F1(x, y) =
∫

2x(1−ey)
(1 + x2)2

dx = (1−ey)
∫

d(1+x2)
(1+x2)2

=
ey−1
1+x2

,

where

∂F1

∂y
=

ey

1 + x2
= g(x, y),

and V(x, y) is seen to be a gradient field.
c) Third method. Here there is plenty of space to integrate along the step curve

C : (0, 0) −→ (x, 0) −→ (x, y),

no matter where (x, y) ∈ R
2 lies. Then∫

C

V · dx =
∫ x

0

0 dt +
∫ y

0

et

1 + x2
dt =

ey − 1
1 + x2

,

which is the candidate, which should be tested.
d) Test.

�F (x, y) =
(
−2x(ey − 1)

(1 + x2)2
,

ey

1 + x2

)
= V(x, y).

We conclude that V(x, y) is a gradient field and an integral is F (x, y).

9) The vector field

V(x, y) = (sin y + y sin x + x, cos x + x cos y + y)

is defined in R
2.
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a) First method. We get by some simple manipulations
V · dx = sin y dx + y sinx dx + x dx + cos x dy + x cos y dy + y dy

=
1
2
d
(
x2 + y2

)
+ (sin y dx + x d sin y) + (−y d cos x + cos x dy)

= d

{
1
2

x2 +
1
2

y2 + x sin y − y cos x

}
+ 2 cos x dy,

which clearly is not a differential, so the field is not a gradient field.
b) Second method. Indefinite integration gives

F1(x, y) =
∫

(sin y + y sinx + x)dx = x sin y − y cos x +
x2

2
,

where

∂F1

∂y
= x cos y − cos x,

thus

cos x + x cos y + y − ∂F1

∂y
= 2 cos x + y.

This expression depends on x, so we conclude that the vector field is not a gradient field.
c) Third method. Choose the step curve

C : (0, 0) −→ (x, 0) −→ (x, y)

as the path of integration in R
2. Then∫

C

V · dx =
∫ x

0

(0 + 0 + t)dt +
∫ y

0

(cos x + x cos t + t)dt

=
1
2

x2 + y cos x + x sin y +
1
2

y2

= F (x, y),
which is the candidate, and we must test it.

d) Test. It follows from
�F (x, y) = (x − y sin x + sin y, cos x + x cos y + y)

= V(x, y) − (2y sin x, 0) 	= V(x, y),
that V(x, y) is not a gradient field.
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Eksempel 3.2 Sketch the domain A of the vector field

V(x, y) =
(

4x − y

x(3x − y)
,−1

3

(
1
y

+
1

3x − y

))
.

Prove that V is a gradient field and find all its integrals.
(Consider first a connected subset of A).

A Gradient field; integral.

D If there exists an integral, it can be found by one of the following three standard methods:

1) First method. Rules of calculation for differentials.

2) Second method. Indefinite integration.

3) Third method. Integration along some curve, typically a step curve. Notice that the test is
mandatory by this method, because one may get “wrong solutions” by this method.

I The vector field is defined in the set

A = {(x, y) | x 	= 0, y 	= 0, y 	= 3x},

which is the union of six connected components. We shall in the following consider any one of
these.

 Simple integrals in several variables
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Figur 30: The six connected components of the domain of V(x, y).

Aside. Before we start on the calculations it will be quite convenient in advance to perform the
following simple decomposition:

4x − y

x(3x − y)
=

x + (3x − y)
x(3x − y)

=
1
x

+
1

3x − y
, (x, y) ∈ A.

The vector field can then also be written

V(x, y) =
(

1
x

+
1

3x − y
,−1

3

(
1
y

+
1

3x − y

))
,

which we shall exploit in the following. ♦

1) First method. The ides is that if F (x, y) is an integral, then we can write

dF = V(x, y) · (dx, dy).

The task is therefore to prove that V(x, y) · (dx, dy) can be written as a differential, dF , from
which we directly get the integral F (x, y).

We get in this case, where we always pair terms which are similar,

V · dx =
(

1
x

+
1

3x − y

)
dx − 1

3

(
1
y

+
1

3x − y

)
dy

=
1
x

dx − 1
3

1
y

dy +
1
3
· 1
3x − y

(3dx − dy)

= d ln |x| − 1
3

d ln |y| + 1
3
· 1
3x − y

d(3x − y)

=
1
3

ln
∣∣∣∣x3

y

∣∣∣∣+ 1
3

ln |3x − y| =
1
3

ln
∣∣∣∣x3(3x − y)

y

∣∣∣∣ .
Since a possible test only consists of doing the same calculations in the reverse order, we
conclude that all the integrals in Ai, i = 1, . . . , 6, are given by

F (x, y) =
1
3

ln
∣∣∣∣x3(3x − y)

y

∣∣∣∣+ Ci,

where Ci ∈ R for (x, y) ∈ Ai, i = 1, . . . , 6.
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2) Second method. Indefinite integration. It follows from the form of the expression that it is
most convenient to perform indefinite integration on the latter coordinate of the vector field. (It
is not an error to choose the former coordinate instead; it is only that the calculations become
somewhat more difficult in that case).

F1(x, y) = −1
3

∫ (
1
y

+
1

3x − y

)
dy = −1

3
ln |y| + 1

3
ln |3x − y|.

Hence

∂F1

∂x
=

1
3
· 3
3x − y

=
1

3x − y
,

so

V1(x, y) − ∂F1

∂x
=

4x − y

x(3x − y)
− 1

3x − y
=

4x − y − x

x(3x − y)
=

1
x

.

As a weak control we note that this expression no longer depends on y, which is the variable
which should have been removed by the integration above.

We get by another integration,

F2(x) =
∫

1
x

dx = ln |x|.

We get in any connected component Ai, i = 1, . . . , 6, the integral

F (x, y) = F1(x, y) + F2(x) = −1
3

ln |y| + 1
3

ln |3x − y| + ln |x| =
1
3

ln
∣∣∣∣x3(3x − y)

y

∣∣∣∣ ,
and all integrals in a connected component Ai, i = 1, . . . , 5 is

F (x, y) =
1
3

ln
∣∣∣∣x3(3x − y)

y

∣∣∣∣+ Ci, Ci ∈ R, (x, y) ∈ Ai, i = 1, . . . , 6.

3) Third method. Because A is the union of six connected components, and since none of these
have a natural starting point, the third method becomes somewhat complicated, so we shall
leave this to the reader. In principal the calculations can be performed.

4) Test. It follows from

F (x, y) = −1
3

ln |y| + 1
3

ln |3x − y| + ln |x| + C1 i Ai

that

�F (x, y) =
(

1
3
· 3
3x − y

+
1
x

,−1
3
· 1
y
− 1

3
· 1
3x − y

)

=
(

4x − y

x(3x − y)
,−1

3

(
1
y

+
1

3x − y

))
= V(x, y).

which shows that V is a gradient field.
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Eksempel 3.3 Let A denote the point set which is obtained by removing the origo and the positive
part of the Y axis from the plane R

2,

A = {(x, y) | x 	= 0 or (x = 0 and y < 0)}.

We define a function f : A → R by

f(x, y) =

⎧⎨
⎩

0, y < 0,
y2, x > 0 og y ≥ 0,

−y2, x < 0 og y ≥ 0.

Prove that f is a C1-function, and that its partial derivative
∂f

∂x
is zero everywhere in A.

A A C1-function, which is not identically 0, and where nevertheless
∂f

∂x
= 0 everywhere.

D Apply the definition of differentiability itself (and not one of the weaker rules of calculations) to

prove that f is of class C1. Then calculate
∂f

∂x
by going to the limit in the difference quotient.

I Clearly, A is open, and f(x, y) is continuous across the X axis (with the exception of (0, 0), which
is not included in the domain). Furthermore, f(x, y) is of class C∞, when (x, y) ∈ A does not lie
on the X axis.

Let us consider a point (x0, 0), x0 	= 0, on the X axis minus (0, 0). If x0 < 0, then

f(x, y) − f(x0, 0) =

⎧⎨
⎩

−y2, for y > 0,

0, for y ≤ 0,
x < 0,

thus

|f(x, y) − f(x0, 0)| ≤ |y|2 = 0 +
√

(x−x0)2+y2 · ε(
√

(x−x0)2+y2).

We get analogously for x0 > 0 that

f(x, y) − f(x0, 0) =

⎧⎨
⎩

y2, for y > 0,

0, for y ≤ 0,
x > 0,

i.e.

f(x, y)−f(x0, y)| ≤ |y|2 = 0+
√

(x−x0)2+y2 · ε(
√

(x−x0)2+y2).

It follows from these considerations that f is of class C1 on the set of points on the X axis which
also is included in A.

It is finally trivial that
∂f

∂x
= 0 everywhere in A.
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Eksempel 3.4 Given the vector field

V(x, y) =
(

2x3+2x+2xy

1+x2
,
x2y2+2y+x2

1+y2

)
, (x, y) ∈ R

2.

1) Prove that V is a gradient field, and find all its integrals.

2) Explain why any of the integrals has the range R.

A Gradient field.

D Prove that ω = V · dx is a differential. (Reduce!)

I 1) When we compute ω we get

ω = V · dx =
2x3y + 2x + 2xy

1 + x2
dx +

x2y2 + 2y + x2

1 + y2
dy

=
2x

1 + x2
dx + 2xy dx +

2y
1 + y2

dy + x2dy

= d ln(1 + x2) + d ln(1 + y2) + {2xy dx + x2dy}
= d

{
ln
(
1 + x2

)
+ ln

(
1 + y2

)
+ x2y

}
.

This proves that V is a gradient field, and that all integrals are given by

FC(x, y) = ln
(
1 + x2

)
+ ln

(
1 + y2

)
+ x2y + C, C ∈ R.

2) It follows from the rules of magnitude that

FC(x, 1) → +∞ for x → ±∞,

and that

FC(x,−1) → −∞ for x → ±∞.

Since FC(x, y) is continuous in (x, y) ∈ R
2 for every fixed C ∈ R, we conclude that the range

is all of R.
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4 Extremum (two variables)

Eksempel 4.1 Find in each of the following cases first the stationary points of the given function
f : R

2 → R. Then check if f in any of these points has an extremum; whenever this is the case, decide
whether it is a maximum or a minimum.

1) f(x, y) = x2 + 2y2 − 2x − 2y.

2) f(x, y) = x2 + y2 + 2xy.

3) f(x, y) = xy2.

4) f(x, y) = 3x3 + 4y3 + 6xy2 − 9x2.

5) f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)

6) f(x, y) = x4 + y4 − 2x2y2.

7) f(x, y) = 3x4 + 4y4 − 4x2y2.

8) f(x, y) = (sinx) cos y.

9) f(x, y) = x2 + y2 + exy.

10) f(x, y) = xy + 2 sinh(1 + x2 + y2).

11) f(x, y) = x3y − 2x2y + xy3.

A Stationary points; extrema.

D Inspect the expression for a smart rearrangement. Find the stationary points. Check if these are
extrema.

I 1) a) First variant. It is seen by inspection that

f(x, y) = x2 + 2y2 − 2x − 2y = (x − 1)2 + 2
(

y − 1
2

)2

− 3
2
.

We conclude that
(

1,
1
2

)
is the only stationary point and that it is a minimum.

b) Second variant. Traditionally the equations of the stationary points are

∂f

∂x
= 2x − 2 = 0 and

∂f

∂y
= 4y − 2 = 0,

from which follows that
(

1,
1
2

)
is the only stationary point.

i) First subvariant. The approximating polynomial of at most second degree is found

by translating the coordinate system to the point
(

1,
1
2

)
, so we introduce the new

variables

x = x1 + 1, y = y1 +
1
2
.
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Then by insertion,

P2(x1, y1) [= f(x, y)] = x2
1 + 2y2

1 − 3
2

[cf. the first variant], which clearly has a minimum for (x1, y1) = (0, 0), i.e. for (x, y) =(
1,

1
2

)
.

ii) Second subvariant. The (r, s, t)-method. It follows from

r =
∂2f

∂x2
= 2, s =

∂2f

∂x∂y
= 0, t =

∂2f

∂y2
= 4,

that r, t > 0 and s2 < rt, so we conclude that we have a minimum.

2) a) Inspection. It is immediately seen that

f(x, y) = x2 + y2 + 2xy = (x + y)2,

which has a minimum (= 0) on the line y = −x. The points of this line are of course not
proper minima.

 Extremum (two variables)
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b) The stationary points. These are the solutions of the equations

∂f

∂x
= 2x + 2y = 2(x + y) = 0,

∂f

∂y
= 2y + 2x = 2(x + y) = 0,

thus every point on the line y = −x is a stationary point.

In this case we cannot conclude anything by the (r, s, t)-method. One should, however, be
able to see that e.g.

df =
∂f

∂x
dx +

∂f

∂y
dy = 2(x + y)(dx + dy) = d(x + y)2,

so f(x, y) = (x + y)2, and we are back to the first variant.
3) It follows from

∂f

∂x
= y2 = 0 og

∂f

∂y
= 2xy = 0

that the stationary points are the points on the X axis y = 0. In a neighbourhood of any
point (x0, 0), x0 	= 0 we see that xy2 has the same sign as x0, and it is 0 on the X axis. This
means that we have a minimum (though not a proper minimum) for every (x0, 0), x0 > 0, and
a maximum (though not a proper maximum) for every (x0, 0), x0 < 0. In the stationary point
(0, 0) we have neither a maximum nor a minimum, because the function in any neighbourhood
of (0, 0) takes on both positive and negative values.

4) When f(x, y) = 3x3 + 4y3 + 6xy2 − 9x2, the equations of the stationary points are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂f

∂x
= 9x2 + 6y2 − 18x = 0,

∂f

∂y
= 12y2 + 12xy = 12y(y + x) = 0.

We get two possibilities from the latter condition:

y = 0 or y = −x.

a) If we put y = 0 into the first equation we get

9x2 − 18x = 9x(x − 2) = 0,

so we conclude that (0, 0) and (2, 0) are stationary points.
b) If we put y = −x into the first equation we get

15x2 − 18x = 15x
(

x − 6
5

)
= 0,

so we get the stationary points (0, 0) and
(

6
5
,−6

5

)
.

Summarizing we get three different stationary points

(0, 0), (2, 0) og
(

6
5
,−6

5

)
.

These are now considered one by one.
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a) The point (0, 0) is not an extremum, because e.g. f(0, y) = 4y3 takes on both positive and
negative values in any neighbourhood of (0, 0).
In the other two cases we apply the (r, s, t)-method. We first calculate the general results

r =
∂2f

∂x2
= 18x − 18, s =

∂2f

∂x∂y
= 12y, t =

∂2f

∂y2
= 24y + 12x.

b) At (2, 0) we have r = 18, s = 0 and t = 24, so rt > s2, r > 0, t > 0, corresponding to a
proper minimum.

c) At
(

6
5
,−6

5

)
we have r =

18
5

, s = −72
5

, t = −72
5

, so rt < s2 (e.g. s and t have different

signs), and we have no extremum.
Summarizing we see that only (2, 0) is an extremum (a proper minimum).

5) It follows by the rearrangement

f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)
=

(
x2 + {y − 1}2 − 1

) (
x2 + {y − 3}2 − 32

)
that f is zero on the circles

x2 + (y − 1)2 = 1 and x2 + (y − 3)2 = 32.

0

1

2

3

4

5

6

y

–4 –3 –2 –1 1 2 3 4

x

Figur 31: Zero curves for f(x, y).

The function is positive inside both circles (i.e. inside the smaller circle), and outside both
circles. It is negative at every point inside the larger circle and outside the smaller circle. The
function is continuous and 0 on both circles, so it follows from the main theorem that we must
have a local maximum inside the smaller circle, and a local minimum inside the larger disc
(and outside the smaller disc). Finally, f is both positive and negative in any neighbourhood
of (0, 0), so this point cannot be an extremum.

Remark. It follows from the above that one can apply the main theorem in a qualitative way
to decide where we must have extrema. Such analyses of figures are very useful. ♦

The stationary points. We shall now start on the tough calculations of the example. It
follows from

f(x, y) = (x2 + y2 − 2y)(x2 + y2 − 6y)
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that

∂f

∂x
= 2x(x2 + y2 − 6y) + 2x(x2 + y2 − 2y) = 4x(x2 + y2 − 4y),

and
∂f

∂y
= (2y − 2)(x2 + y2 − 6y) + (2y − 6)(x2 + y2 − 2y)

= (2y−4)(x2+y2−6y)+2(x2+y2−6y) +(2y−4)(x2+y2−2y)−2(x2+y2−2y)
= 4(y − 2)(x2 + y2 − 4y) − 8y
= 4

{
(y − 2)(x2 + y2 − 4y) − 2y

}
.

The two equations of the stationary points are therefore written more conveniently

(2)

⎧⎨
⎩

x(x2 + y2 − 4y) = 0,

(y − 2)(x2 + y2 − 4y) = 2y.

It follows from the first equation that the stationary points (if any) either lies on the line x = 0
or on the circle x2 + (y − 2)2 = 22.

a) If x = 0, then we get from the latter equation (2) that
0 = (y − 2)(y2 − 4y) − 2y = y{(y − 2)(y − 4) − 2}

= y
{
y2 − 6y + 6

}
= y

{
(y − 3)2 − (

√
3)2
}

,

so either y = 0 or y = 3 ±
√

3. Hence we get three stationary points,

(0, 0), (0, 3 +
√

3), (0, 3 −
√

3).

b) If x2 + y2 − 4y = 0, then it follows from the latter equation of (2) that y = 0, and thus
x = 0, so we find again (0, 0).

Summarizing we get the three stationary points

(0, 0), (0, 3 +
√

3), (0, 3 −
√

3).

Alternatively the expression gives the inspiration of using polar coordinates. We get

f(x, y) = (�2 − 2� sin ϕ)(�2 − 6� sin ϕ) = �4 − 8�3 sin � + 12 varrho2 sin2 ϕ,

hence
∂f

∂�
= 4�3 − 24�2 sin ϕ + 24� sin2 ϕ = 4�

(
�2 − 6� sin ϕ + 6 sin2 ϕ

)
,

∂f

∂ϕ
= −8�3 cos ϕ + 24ϕ2 sin ϕ cos ϕ = 8�2 cos ϕ(−� + 3 sin ϕ).

After a reduction the system of equations is written

(3)

⎧⎨
⎩

�
(
�2 − 6� sin ϕ + 6 sin2 ϕ

)
= 0,

�2 cos ϕ(3 sin ϕ − �) = 0.

From the latter equation we get the three possibilities � = 0, cos ϕ = 0 and 3 sinϕ = �.
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a) If � = 0, then both equations are fulfilled so (0, 0) is a stationary point corresponding to
� = 0, hence to (0, 0) in rectangular coordinates.

b) If cosϕ = 0 (and � ≥ 0), then sinϕ = ±1.
i) When sinϕ = −1 it follows that

�2 − 6� sin ϕ + 6 sin2 ϕ = �2 + 6� + 6 ≥ 6 for � ≥ 0,

so we are only left with the possibility � = 0, which has already been treated above.
ii) When sinϕ = 1 (and � = y, because y = � sin ϕ), then

�2 − 6� sin ϕ + 6 sin2 ϕ = �2 − 6� + 6 = 0

has the two positive solutions � = 3 ±
√

3, corresponding to the stationary points

(0, 3 +
√

3) and (0, 3 −
√

3)

in rectangular coordinates.
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c) If 3 sin ϕ = �, then

0 = 4�
(

�2 − 2� · 3 sin ϕ +
2
3
(3 sin ϕ)2

)
= 4�

(
�2 − 2�2 +

2
3

�2

)
= −8

3
�2,

with the only solution � = 0, which we have already treated above.

Summarizing we get in rectangular coordinates the following three stationary points

(0, 0), (0, 3 +
√

3), (0, 3 −
√

3).

Check of the type of the stationary points, inspection. It follows from the discussion
of the sign in the beginning of the example that (0, 0) is not an extremum, because the function
takes on both positive and negative values in any neighbourhood of (0, 0).

The point (0, 3−
√

3) must be a local maximum. In fact, we have already by the main theorem
concluded that there exists a local maximum in the smaller disc, and since f ∈ C∞, it can only
be attained at a stationary point. Since (0, 3 −

√
3) is the only stationary point in the smaller

disc the claim follows.

It follows analogously by the discussion of the sign that (0, 3 +
√

3) must be a local minimum.

Remark. Notice that by the application of the main theorem we obtain a much simpler analysis
than by the traditional standard methods in the following. We have almost done everything! ♦

Investigation of the type of the stationary points, standard procedure.

a) We first check (0, 0).
i) First variant, the (r, s, t)-method. This breaks totally down because

r = s = t = 0,

and nothing can be concluded.
ii) Second variant. Approximating polynomials of at most second degree. This cannot

be used either, because

P2(x, y) ≡ 0,

and nothing can be concluded.
iii) Third variant. A dirty trick. If follows from

4ab = (a + b)2 − (a − b)2, dvs. ab =
1
4
{
(a + b)2 − (a − b)2

}
,

that

a = x2 + y2 − 2y and b = x2 + y2 − 6y,

so

f(x, y) =
1
4
{
4(x2 + y2 − 4y)2 − 16y2

}
= (x2 + y2 − 4y)2 − 4y2.
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If we go towards (0, 0) along the line y = 0, then f(x, 0) > 0, and if we go towards (0, 0)
along the circle x2 + y2 − 4y = 0, then f(x, y) < 0, so f takes on both positive and
negative values in any neighbourhood of(0, 0). Therefore we cannot have an extremum
at (0, 0).

Remark. The trick above is one of the very oldest in mathematics. The Egyptians did
not have tables of multiplication, though tables of squared numbers. They used the trick
above to calculate products. ♦

Erroneous variant. One might try to investigate the limit along all lines through (0, 0).
i) If y = 0, then f(x, 0) = x4 > 0 for x 	= 0.
ii) If x = 0, then

f(0, y) = (y2 − 2y)(y2 − 6y) = y2(2 − y)(6 − y) > 0 for 0 < |y| < 2.

iii) If y = ax, a 	= 0, then

f(x, ax) = · · · = x2{2a − (1 + a2)x}{6a − (1 + a2)x},

where the product of the latter two factors tends towards 12a2 > 0 for x → 0, and
accordingly

f(x, ax) > 0 sufficiently close to 0.

One might then erroneously conclude that (0, 0) is a minimum, what it is not.
b) Let us return to the points (0, 3 ±

√
3). These are checked by the (r, s, t)-method. First

calculate

r =
∂2f

∂x2
= 4{x2 + y − 4y} + 8x2 = 12x2 + 4y(y − 4),

s =
∂2f

∂x∂y
= 4x(2y − 4) = 8x(y − 2),

t =
∂2f

∂y2
= 4(x2 + y2 − 4y) + 4(y − 2)(2y − 4) − 8 = 4x2 + 12y(y − 4).

Since both stationary points satisfy x = 0 we can reduce in the following way
r|x=0 = 4y(y − 4),
s|x=0 = 0,
t|x=0 = 12y(y − 4) = 3r|x=0,

thus

r|x=0t|x=0 = 3
(
r|x=0

)2 ≥ 0 = s2
|x=0.

We therefore have extremum when r|x=0 	= 0.

i) We have at the point (0, 3 +
√

3) that 3 +
√

3 > 4, so r > 0, and t > 0, so we have a
minimum.

ii) We have at the point (0, 3 −
√

3) that 3 −
√

3 < 4, so r < 0, and t < 0, and we have a
maximum.

6) Here

f(x, y) = x4 + y4 − 2x2y2 =
(
x2 − y2

)2
= (x − y)2(x + y)2,
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corresponding to a minimum on the lines y = x and y = −x.

Alternatively,

∂f

∂x
= 4x3 − 4xy2 = 4x(x2 − y2),

∂f

∂y
= 4y3 − 4x2y = 4y(y2 − x2).

The stationary points are

(0, 0), (x, x) and (x,−x), x ∈ R,

corresponding to the fact that the stationary points form the set consisting of the two lines
y = x and y = −x. On these we have a minimum, though not a proper minimum.

7) Here

f(x, y) = 3x4 + 4y4 − 4x2y2 = (4y4 − 4x2y2 + x4)02x4 =
(
2y2 − x2

)2
+ 2x4,

so we have got a minimum for y2 =
1
2

x2 = 0, i.e. at (0, 0).

Alternatively

∂f

∂x
= 12x3 − 8xy2 = 4x(3z2 − 2y2),

∂f

∂y
= 16y3 − 8x2y = 8y(2y2 − x2).

It is almost obvious that (0, 0) is the only stationary point.

8) Here

∂f

∂x
= cos x · cos y and

∂f

∂y
= − sin x · siny.

These expressions are both zero, if and only if

(x, y) =
(π

2
+ pπ, qπ

)
, p, q ∈ Z,

hence

(x, y) =
(
pπ,

π

2
+ qπ

)
, p, q ∈ Z.

These are the stationary points.

Since

f
(π

2
+ pπ, qπ

)
= (−1)p · (−1)q = (−1)p+q og f

(
pπ,

π

2
+ qπ

)
= 0,

and |f(x, y)| ≤ 1, it follows immediately that we have maxima at(π

2
+ pπ, qπ

)
for p + q even,
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and minima at(π

2
+ pπ, qπ

)
for p + q odd.

In the neighbourhood of any point of the form
(
pπ,

π

2
+ qπ

)
the function attains both positive

and negative values, so these points are not extrema.

9) The equations of the stationary points for f(x, y) = x2 + y2 + exy are

∂f

∂x
= 2x + yexy = 0,

∂f

∂y
= 2y + xexy = 0.

These are clearly satisfied for (x, y) = (0, 0), so (0, 0) is a stationary point.

Assume that x 	= 0. Then also y 	= 0, and thus xy 	= 0. Accordingly,

2x2 = −xyexy = 2y2,
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i.e. x2 = y2 and xy ≤ 0, so y = −x. If this restriction is put into the first equation, we get

0 = 2x − xe−x2
= x

(
2 − e−x2

)
,

which has only the solution x = 0.

Remark. This is actually a “false solution”. On the other hand, we have already checked that
(0, 0) is a stationary point. ♦

Hence, (0, 0) is the only stationary point.

The problem of a possible extremum at (0, 0) can be solved in various ways.

a) It follows from
f(x, y) = x2 + y2 + exy

= x2 + y2 + 1 + xy + xyε(xy) (Taylor)

= 1 +
1
2
{
x2 + y2 + (x + y)2

}
+ xy · ε(x, y)

that (0, 0) is a proper minimum.
b) We get from

∂2f

∂x2
= 2 + y2exy, r = 2,

∂2f

∂x∂y
= exy + xyexy, s = 1,

∂2f

∂y2
= 2 + x2exy, t = 2,

that rt > s2, and since r > 0 and t > 0, the stationary point (0, 0) must be a proper
minimum.

10) The equations for the stationary points for f(x, y) = xy + 2 sinh(1 + x2 + y2) are

∂f

∂x
= y + 4x cosh(1 + x2 + y2) = 0,

∂f

∂y
= x + 4y cosh(1 + x2 + y2) = 0.

By inspection, (0, 0) is clearly a stationary point. If there were other stationary points they
should fulfil xy 	= 0. Assume that (x, y) 	= (0, 0) is such a stationary point. Then

y2 = −4xy cosh(1 + x2 + y2) = x2,

so y2 = x2 and xy < 0, thus y = −x. By insertion the condition is reduced to

0 = −x + 4x cosh(1 + 2x2) = x(4 cosh(1 + 2x2) − 1).

Now 4 cosh(1 + 2x2) − 1 > 0, so x = 0 is the only solution (and strictly speaking we assumed
that x 	= 0). On the other hand, he have already proved that (0, 0) is a stationary point.
Accordingly, (0, 0) is the only stationary point.

Concerning extremum at (0, 0) we have again several possibilities.
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a) It follows from

∂2f

∂x2
= 4 cosh(1 + x2 + y2) + x{· · · }, r = 4 cosh 1,

∂2f

∂x∂y
= 1 + x{· · · }, s = 1,

∂2f

∂y2
= 4 cosh(1 + x2 + y2) + y{· · · }, t = 4 cosh 1,

that rt > s2 and r > 0 and t > 0, corresponding to a minimum.
b) It is this time more tricky just to inspect the function, though it is still possible:

f(x, y) = xy + 2 sinh(1 + x2 + y2)

= xy + 2 sinh 1 · cosh(x2 + y2) + 2 cosh 1 · sinh(x2 + y2)

= xy + 2 sinh 1 ·
{
1 + (x2 + y2)ε(x2 + y2)

}

+2 cosh 1 ·
{
x2 + y2 + (x2 + y2)ε(x2 + y2)

}

= 2 sinh 1 +
1
2
(x + y)2 +

{
2 cosh 1 − 1

2

}
(x2 + y2)

+(x2 + y2)ε(x2 + y2).

Since cosh 1 − 1
2

> 0, it follows by this rearrangement that we have a minimum at (0, 0).

11) It follows from

f(x, y) = x3y − 2x2y + xy3 = xy
{
x2 − 2x + y2

}
= xy

{
(x − 1)2 + y2 − 1

}
,

that the zero curves for f(x, y) are the coordinate axes and the circle of centrum (1, 0) and
radius 1.
The plane is then divided into six subregions, in which the sign of the function is fixed. Every
one of these open subregions have (0, 0) as a boundary point, so if one circles around (0, 0),
then the sign of the function will be positive in every second subregion and negative in the
others, because the sign is negative in the second quadrant and positive in the third quadrant.

The equations of the stationary points are

∂f

∂x
= 3x2y − 4xy + y3 = y(3x2 − 4x + y2) = 0,

and
∂f

∂y
= x3 − 2x2 + 3xy2 = x(x2 − 2x + 3y2) = 0.

If we put y = 0, then the first equation is fulfilled, and the second one is reduced to

0 = x(x2 − 2x) = x2(x − 2).

 Extremum (two variables)



Download free books at BookBooN.com

Calculus 2c-3

 

69  
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Figur 32: The zero curves for f(x, y).

Therefore, in this case we get the stationary points (0, 0) and (2, 0).

If instead y2 = 4x − 3x2 = 3x
(

4
3
− x

)
≥ 0, the first equation is again fulfilled. Then notice

that this implies that x ∈
[
0,

4
3

]
. By insertion into the second equation we get

0 = x(x2 − 2x + 12x − 9x2) = x2(10 − 8x) = 8x2

(
5
4
− x

)
,

where the solutions are x = 0 and x =
5
4
∈
[
0,

4
3

]
.

When x = 0 we get y = 0, so we find again the stationary point (0, 0).

When x =
5
4

we get

y2 = 4x − 3x2 = 5 − 73
16

=
5
16

, i.e. y = ±
√

5
4

,

corresponding to the stationary points(
5
4
,

√
5

4

)
and

(
5
4
,−

√
5

4

)
.

Summarizing we have found the four stationary points

(0, 0), (2, 0),

(
5
4
,

√
5

4

)
,

(
5
4
,−

√
5

4

)
.

It follows from the figure that (0, 0) and (2, 0) both lie on one of the zero curves, so

f(0, 0) = f(2, 0) = 0.
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Then we conclude from the discussion of the sign that the function is both positive and negative
in any neighbourhood of the points (0, 0) and (2, 0), so these cannot be extrema.

Since f is of class C∞, and since the two closed half discs are bounded with the value 0 of the
function on the boundaries, it follows from the second main theorem that we have a minimum
somewhere in the interior of the upper half disc and a maximum somewhere in the interior of
the lower half disc. These must necessarily be attained at stationary points. There is exactly
one stationary point in each of these half discs, so we conclude that the local minimum is

f

(
5
4
,

√
5

4

)
=

5
4
·
√

5
4

{
25
16

− 5
2

+
5
16

}
=

5
√

5
16

(
−10

16

)
= −25

√
5

128
,

and the local maximum is

f

(
5
4
,−

√
5

4

)
=

25
√

5
128

.
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Alternatively one may try the (r, s, t)-method. First calculate

r =
∂2f

∂x2
= 6xy − 4y = 2y(3x − 2),

s =
∂2f

∂x∂y
= 3x2 − 4x + 3y2,

t =
∂2f

∂y2
= 6xy.

For (0, 0) we cannot conclude anything, because r = s = t = 0.

For (2, 0) we get r = 0, s = 12 − 8 = 4 and t = 0, thus rt < s2, and we have no extremum.

For

(
5
4
,

√
5

4

)
we get

r =
√

5
4

(
15
4

− 2
)

=
7
√

5
8

,

s =
75
16

− 5 +
15
16

=
5
8
,

t = 6 · 5
4
·
√

5
4

=
15
√

5
8

.

Since r > 0, t > 0 and rt =
525
64

>
25
64

= s2, we conclude that we have a proper minimum at
the point.

For

(
5
4
,−

√
5

4

)
we get [cf. the above]

r = −7
√

5
8

, s =
5
8
, t = −15

√
5

8
,

so r < 0, t < 0 and rt > s2, and we have a proper maximum at the point.

Finally, let us consider the point (0, 0). By using polar coordinates we get

f(x, y) = �4 cos3 ϕ sin ϕ − 2�3 cos2 ϕ sin ϕ + �4 cos ϕ · sin3 ϕ

= �2{−2 cos2 ϕ sin ϕ + ϕ cos ϕ · sinϕ}.
When � → 0+, the first term dominates in most cases, and since the first term can take on
both positive and negative values, we conclude that (0, 0) is not an extremum.
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Eksempel 4.2 Let α be a constant. Check for each value of α if the function

f(x, y) = x2 + y2 + αxy + (x − y)4

has an extremum at (0, 0). Whenever this is the case, check also if it is a proper extremum.

A Investigation of extrema.

D First method. Rewrite f(x, y) and give a direct argument.

Second method. Apply the (r, s, t)-method.

I As f(x, y) is a polynomial,f(x, y) is of class C∞. We note that f(0, 0) = 0.

1) First method. This method is similar to (though not identical with) the procedure of finding
the approximating polynomial of second degree. By rewriting the terms of second degree we
get

f(x, y) = x2 + y2 + αxy + (x − y)4

=
{

x2 + 2x · α

2
y +

(α

2
y
)2
}

+
{

1 − α2

4

}
y2 + (x − y)4

=
(
(x +

α

2
y
)2

+
{

1 −
(α

2

)2
}

y2 + (x − y)4.(4)

Then we split the investigation into various cases.

a) If |α| < 2, then all three terms of (4) are bigger than or equal to 0, and when (x, y) 	= (0, 0),
then at least one of them is bigger than zero. Thus we conclude that (0, 0) is a proper
minimum.

b) If α = 2, then (4) reduces to

f(x, y) = (x + y)2 + (x − y)4 [≥ 0].

If (x, y) 	= (0, 0), then x + y and x − y cannot both be 0 and we conclude as above that we
have a proper minimum at (0, 0).

c) If α = −2 (the difficult case) we write (4) in the form

f(x, y) = (x − y)2 + (x − y)4 = (x − y)2{1 + (x − y)2} [≥ 0].

It follows that the minimum 0 is attained on the line y = x, so we conclude that we have a
minimum, but not a proper minimum at (0, 0).

d) If |α| > 2, then 0 > 1 −
(α

2

)2

= −β2, where β > 0, and the function can be written

f(x, y) =
(
x +

α

2
y
)2

− (βy)2 + (x − y)4,

and the approximating polynomial of second degree is

P2(x, y) =
(
x +

α

2
y
)2

− (βy)2.

Since

P2

(
x,− 2

α
x

)
= 0 − 4β2

α2
x2 = −

(
2βx

α

)2

< 0 for x 	= 0,
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and

P2(x, 0) = x2 > 0 for x 	= 0,

[in fact also f(x, 0) > 0 for x 	= 0], we conclude that f(x, y) attains both positive and
negative values in any neighbourhood of (0, 0), and we do not have an extremum.

Summarizing we have

α < −2 : (0, 0) is not an extremum,

α = −2 : (0, 0) is a (non-proper) minimum,
α ∈ ] − 2, 2] : (0, 0) is a proper minimum,

α > 2 : (0, 0) is not an extremum.

2) Second method, the (r, s, t)-method. First notice that the (r, s, t)-method can only/ be ap-
plied if f ∈ C2 and if (0, 0) indeed is a stationary point. Therefore, we must first show that
(0, 0) is a stationary point.

It follows from

f(x, y) = x2 + y2 + αxy + (x − y)4, f(0, 0) = 0,

that

∂f

∂x
= 2x + αy + 4(x − y)3,

∂f

∂x
(0, 0) = 0,

∂f

∂y
= 2y + αx − 4(x − y)3,

∂f

∂y
(0, 0) = 0,

so (0, 0) is a stationary point.

Furthermore,

∂2f

∂x2
= 2 + 12(x − y)2, r =

∂2f

∂x2
(0, 0) = 2,

∂2f

∂x∂y
= α − 12(x − y)2, s =

∂2f

∂x∂y
(0, 0) = α,

∂2f

∂y2
= 2 + 12(x − y)2, t =

∂2f

∂y2
(0, 0) = 2.

A sufficient condition for extremum is that rt > s2, i.e. α < 4, which is fulfilled for α ∈ ]−2, 2[.
Since r, t > 0, the stationary point (0, 0) is a proper minimum, when α ∈ ] − 2, 2[.

If |α| > 2, then rt = 4 < α2 = s2, and we do not have an extremum in this case.

If α2 = 4, i.e. α = ±2, then s2 = rt, and we cannot conclude anything by the (r, s, t)-method.

Notice that this negative result is no reason to stop. We have only demonstrated that one
particular method does not work. Let us now investigate each of the cases α = 2 and α = −2
one by one.
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a) If α = 2, then f(x, y) is written

f(x, y) = x2 + y2 + 2xy + (x − y)4 = (x + y)2 + (x − y)4 ≥ 0.

When (x, y) 	= (0, 0), at least one of the terms (x+ y)2 is (x− y)4 positive, and we conclude
that (0, 0) is a proper minimum.

b) Analogously, if α = −2,

f(x, y) = x2 + y2 − 2xy + (x − y)4 = (x − y)2 + (x − y)4 = (x − y)2{1 + (x − y)2}.

We conclude that f(x, y) ≥ 0 and f(x, x) = 0 for every x, i.e. on the line. This shows that
(0, 0) is a non-proper minimum. Summarizing we get

|α| > 2 : (0, 0) is not an extremum.

|α| < 2 : (0, 0) is a proper minimum,

α = 2 : (0, 0) is a proper minimum,

α = −2 : (0, 0) is a (non-proper) minimum.

 Extremum (two variables)
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Eksempel 4.3 Let the function f : R
2 → R be given by

f(x, y) = 3x4 − 4x2y + y2.

Show that the restriction of f to any straight line through (0, 0) has a proper minimum at the point
(0, 0). Then prove that f does not have a minimum at this point.
(Write f(x, y) as a product of two factors and check the sign of f in discs with centrum at the origo).

A Extremum.

D Insert x = 0 and y = αx into f(x, y), and prove that there is a minimum at (0, 0) on each of these
lines.

Consider possibly f(x, y) as a polynomial in y of degree 2 for every x which will help to factorize
f(x, y). Use this factorization to discuss the sign of f(x, y).

I 1) When x = 0 we get f(0, y) = y2, which clearly has a minimum for y = 0, i.e. at (0, 0).

2) When we restrict ourselves to the line y = αx we get

f(x, αx) = 3x4 − 4αx3 + α2x2 = x2(α2 − 4αx + 3x2)
= x2{(α − 2x)2 − x2} = x2(α − x)(α − 3x).

If α 	= 0, then (α − x)(α − 3x) > 0 for |x| <
∣∣∣α
3

∣∣∣, i.e.

f(x, αx) > 0 for 0 < |x| <
1
3
|x|,

and f(0, 0) = 0, proving that (0, 0) is a minimum.

If α = 0, then f(x, 0) = 3x4, which clearly has a minimum for x = 0, i.e. at the point (0, 0).

Summarizing we get that the restriction of f(x, y) to any straight line through (0, 0) has a
minimum at (0, 0).

3) If we consider f(x, y) = y2 − 4x2y + 3x4 as a polynomial of second degree in y for every fixed
x, we get the roots

y = x2 and y = 3x2.

Then we conclude that we have the factorization

f(x, y) = 3x4 − 4x2y + y2 = (y − x2)(y − 3x2).

When we sketch the zero curves, the plane is divided as shown on the figure into four regions,
where f(x, y) > 0 inside both parabolas or outside both parabolas, and f(x, y) < 0 between
the two parabolas.

It follows from the figure that f(x, y) is both positive and negative in any neighbourhood of
the point (0, 0), where f(0, 0) = 0.

Remark. When we consider the line on the figure we see that it will always lie totally in a
“positive” region, when we are close to (0, 0). The trick of the example is that the zero curves
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Figur 33: The function is positive inside both parabolas, and outside both parabolas, and negative
between them.

are so “flat” in the neighbourhood of (0, 0) that they cannot be “caught” by any straight line.
♦

Alternatively we see that if we take the restriction to the curve given by the equation
y = 2x2, then

f(x, 2x2) = 3x4 − 8x4 + 4x4 = −x4,

which obviously has a (local) maximum for x = 0, i.e. at (0, 0), so (0, 0) cannot be an ex-
tremum. The construction of this alternative solution relies on that we can choose a curve in
the “negative” region between the two zero curves approaching (0, 0).

Eksempel 4.4 Let the function f : R
2 → R be given by

f(x, y) = −x2 + 2xy2 − y4 + y5.

Show that the restriction of f to any straight line through (0, 0) has a proper maximum at this point.
Then prove that f dos not have an extremum at this point.
(Find a restriction f(g(y), y), such that only the latter term on the right hand side remains).

A Extremum.

D Insert x = 0, y = 0 and y = αx i f(x, y). Then exploit that −x2 + 2xy2 − y4 = −(x − y2)2.

I Clearly, f(0, 0) = 0.

If x = 0, then f(0, y) = −y4 + y5 = −y4(1 − y), which clearly has a maximum for y = 0, i.e.
at(0, 0).

If y = 0, then f(x, 0) = −x2, which clearly has a maximum for x = 0, i.e. at (0, 0).

If y = αx, α 	= 0, then

f(x, αx) = −x2 + 2α2x3 − α4x4 + α5x5 = −x2
{
1 − 2α2x + α4x2 − α5x3

}
.

 Extremum (two variables)
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Figur 34: The parabola x = y2.

When |x| is small, then the latter factor is positive, and it follows that f(x, αx) has a maximum
for x = 0.

Finally, we can write f(x, y) in the form

f(x, y) = −(x2 − 2xy2 + y4) + y5 = −(x − y2)2 + y5.

When we restrict ourselves to the parabola x = y2, y ∈ R, then

f(y2, y) = y2

has the same sign as y, so f(x, y) attains both positive and negative values in any neighbourhood
of (0, 0). It follows that (0, 0) is not an extremum.

Eksempel 4.5 Let f : R
2 → R be given by

f(x, y) = x2y + xy2 + x2 + xy + 1.

check if f has an extremum at (0, 0).

A Extremum.

D Here we have several possible methods:

1) First variant. The (r, s, t)-method.

2) Second variant. Factorize x2 + xy2 + x2 + xy, and discuss the sign of it.

3) Third variant. Put y = αx into f(x, y) for some choice of α.

I 1) First variant. This time (almost an exception) the (r, s, t)-method is the simplest one, so we
shall start with it. From

∂f

∂x
= 2xy + y2 + 2x + y,

∂f

∂y
= x2 + 2xy + x,
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follows

∂f

∂x
(0, 0) = 0 og

∂f

∂y
(0, 0) = 0,

so (0, 0) is a stationary point. (Notice that this must be checked before we continue with the
(r, s, t)-method).

Then it is quite easy to see that we have at (0, 0)

r = 2, s = 1 and t = 0,

so rt = 0 < 1 = s2. We conclude that there is no extremum at (0, 0).

 Extremum (two variables)
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Figur 35: The zero curves are the lines x + y = 0, x = 0 and y = −1. In the subregions the product
(y + 1)x(x + y) is positive and negative every second time.

2) Second variant. We get by a factorization,

f(x, y) = x2y + xy2 + x2 + x + 1 = xy(x + y) + x(x + y) + 1.

The value of the function is f(0, 0) = 1, and the “disturbance”

(y + 1)x(x + y)

has the zero curves as shown on the figure. The sign of the “disturbance” changes whenever one
passes a zero curve, so if one moves around (0, 0), one will always pass through both positive
and negative regions for f(x, y) − f(0, 0). This means that f(x, y) cannot have an extremum
at (0, 0), because f(x, y) attains both values > f(0, 0) and < f(0, 0) in any neighbourhood of
(0, 0).

3) Third variant Along the line y = αx we get

ϕα(x) = f(x, αx) = (α + α2)x3 + (1 + α)x2 + 1 = 1 + (1 + α)x2 + · · · ,

where the dots indicate terms of higher degree which are small in a neighbourhood of (0, 0)
compared to x2.

a) If α > −1, then ϕα(x) ≥ 1 in a neighbourhood of x = 0.
b) If α < −1, then ϕα(x) ≤ 1 in a neighbourhood of x = 0.

In both cases we have a strict inequality sign in a dotted neighbourhood, and we conclude that
there is no extremum at (0, 0).
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Eksempel 4.6 Let α 	= 0 be a constant. Consider the function

f(x, y) = α3xy +
1
x

+
1
y
, xy 	= 0.

Find the extremum of the function, and indicate for every value of α the type of the extremum.

A Extremum.

D Find the stationary points, if any, and check if they are extrema.
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Figur 36: The graph of f(x, y) for α = 1. It is difficult to see on this figure that we have a minimum
at (1, 1). The graph of f(x, y) for α = −1 gives even less information.

I The coordinates of the possible stationary points are the solutions of the equations

∂f

∂x
= α3y − 1

x2
= 0 and

∂f

∂y
= α3x − 1

y2
= 0,

accordingly,

α3x2y = 1 og α3xy2 = 1 = α3x2y,

so y = x.

We get by insertion x = y =
1
α

, so there is just one stationary point,
(

1
α

,
1
α

)
, and the value of

the function is here

f

(
1
α

,
1
α

)
= 3α.

Furthermore,

∂2f

∂x2
=

2
x3

,
∂2f

∂x∂y
= α3,

∂2f

∂y2
=

2
y3

,

hence

r = 2α3, s = α3, t = 2α3,
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and whence

rt − s2 = 4α6 − α6 = 3α6 > 0,

showing that we have an extremum.

1) If α > 0, then r = 2α3 > 0 and t = 2α3 > 0, and we have a proper minimum.

2) If instead α < 0, we get analogously a proper maximum.

Eksempel 4.7 Check if the function

f(x, y) = x3 + xy2 + 4xy − 3x − 4y, (x, y) ∈ R
2,

has an extremum at (1, 0).

A Extremum.

D Here we have two variants:

First variant. Show that (1, 0) is a stationary point, and then apply the (r, s, t)-method.

Second variant. Translate the coordinate system to (1, 0) and argue directly.
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Figur 37: The surface in a neighbourhood of (1, 0). The figure does not give any hint of the type of
the stationary point.

I First variant. It follows from

∂f

∂x
= 3x2 + y2 + 4y − 3,

∂f

∂x
(1, 0) = 0,

∂f

∂y
= 2xy + 4x − 4,

∂f

∂y
(1, 0) = 0,

that (1, 0) is a stationary point.

Now,

∂2f

∂x2
= 6x,

∂2f

∂x∂y
= 2y + 4,

∂2f

∂y2
= 2x,

 Extremum (two variables)
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so we get at the point (1, 0) that

r = 6, s = 4, t = 2.

Since rt = 12 < 16 = s2, there is no extremum at (1, 0).
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Figur 38: The zero curves of (x + y − 1)(x + 3y − 1).
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Second variant. If we put x = t + 1, then we shall check what happens in the neighbourhood of
(t, y) = (0, 0). A simple computation gives

f(t + 1, y) = (t + 1)3 + (t + 1)y2 + 4(t + 1)y − 3(t + 1) − 4y
= t3 + 3t2 + 3t + 1 + ty2 + y2 + 4ty + 4y − 3t − 3 − 4y
= −2 + 3t2 + 4ty + y2 + t(t2 + y2)
= −2 + (t + y)(t + 3y) + t(t2 + y2).

The term of second order

(t + y)(t + 3y) = (x + y − 1)(x + 3y − 1)

is both positive and negative in any neighbourhood of the point (x, y) = (1, 0), and since it
in general dominates the term of third order t(t2 + y2) = (x − 1){(x − 1)2 + y2}, there is no
extremum at (1, 0).

Eksempel 4.8 Given the function

f(x, y) = e2y + 4ey sinx, (x, y) ∈ R
2.

1) Find the stationary points of f ; check if f has a proper extremum.

2) Explain why f has both a maximum S and a minimum M on the rectangle [0, 2π]× [0, 1]; Finally,
find S and M .

A Extrema.

D Find the stationary points; check the values on the boundary.
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Figur 39: The graph of f(x, t) for (x, y) ∈ [0, 2π] × [0, 1].

I 1) The equations of the stationary points are

∂f

∂x
= 4ey cos x = 0 og

∂f

∂y
= 2e2y + 4ey sin x = 0.

It follows from the former equation that cosx = 0, thus x =
π

2
+ pπ, p ∈ Z.
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If x =
π

2
+ 2pπ, p ∈ Z, then

∂f

∂y
= 2e2y + 4ey > 0,

and these x-values do not correspond to stationary points.

If x =
3π
2

+ 2pπ, p ∈ Z, then

∂f

∂y
= 2e2y − 4ey = 2ey(ey − 2) = 0

for y = ln 2. Thus the stationary points are{(
3π
2

+ 2pπ, ln 2
) ∣∣∣∣ p ∈ Z

}
.

Furthermore,

∂2f

∂x2
= −4ey sin x,

∂2f

∂x∂y
= 4ey cos x,

∂2f

∂y2
= 4e2y + 4ey sinx.

At the points
(

3π
2

+ 2pπ, ln 2
)

we get r = 8, s = 0, t = 16 − 8 = 8, so rt − s2 = 64 > 0, and

we have an extremum. As r > 0 and t > 0, these are all minima.
The values of the function at these points are

f

(
3π
2

+ 2pπ, ln 2
)

= 4 − 8 = −4.

2) Since f is continuous (it is of class C∞), and the rectangle

D = [0, 2π] × [0, 1]

is closed and bounded (compact), it follows from the second main theorem for continuous
functions that f has both a maximum and a minimum in D.

These can only be attained at a stationary point(
3π
2

, ln 2
)

∈ D,

or on the boundary.
a) For the stationary point we get

f

(
3π
2

, ln 2
)

= −4.

b) Taking the restriction of f to the boundary curve (x, y) = (x, 0), x ∈ [0, 2π], we get:

ϕ1(x) = 1 + 4 sinx, x ∈ [0, 2π],

with the maximum and minimum, respectively,

ϕ1

(π

2

)
= 1 + 4 = 5, ϕ1

(
3π
2

)
= 1 − 4 = −3.
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c) On the boundary curve (x, y) = (0, y), y ∈ [0, 1], or the boundary curve (x, y) = (2π, y),
y ∈ [0, 1], we get the restriction of f :

ϕ2(y) = e2y, y ∈ [0, 1],

with the maximum and minimum, respectively,

ϕ2(1) = e2, ϕ2(0) = 1.

d) On the boundary curve (x, y) = (x, 1), x ∈ [0, 2π], we get the restriction of f :

ϕ3(x) = e2 + 4e sin x, x ∈ [0, 2π],

with the maximum and minimum, respectively,

ϕ3

(π

2

)
= e2 + 4y = (e + 2)2 − 4 > 10 > e2

and

ϕ3

(
3π
2

)
= e2 − 4e = −e(4 − e) = (e − 2)2 − 4 > −4.

 Extremum (two variables)
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Finally, by a numerical comparison of

a)

f

(
3π
2

, ln 2
)

= −4,

b)

f
(π

2
, 0
)

= 5, f

(
3π
2

, 0
)

= −3,

c)

f(0, 1) = f(2π, 1) = e2, f(0, 0) = f(2π, 0) = 1,

d)

f
(π

2
, 1
)

= e2 + 4eAe2, f

(
3π
2

, 1
)

= e2 − 4e > −4,

we conclude that the maximum is

S = f
(π

2
, 1
)

= e2 + 4e,

and the minimum is

M = f

(
3π
2

, ln 2
)

= −4.

Eksempel 4.9 Check if the function

f(x, y) = 2 cosh(x + y) − exy, (x, y) ∈ R
2,

has an extremum and (0, 0), and indicate its type if there is an extremum.

A Extremum.

D Either use known series expansions, or compute the Taylor coefficients.

I First method. We get by well-known series expansions from (0, 0),

f(x, y) = 2 cosh(x + y) − exy

= 2
{

1 +
1
2

(x + y)2 + · · ·
}
− {1 + xy + · · · }

= 1 + (x + y)2 − xy + · · · ,

so the approximating polynomial of at most second degree is

P2(x, y) = 10x2 + xy + y2 = 1 +
(

x +
1
2

y

)2

+
3
4

y2.

It follows from the latter expression that f(x, y) has a local minimum at (0, 0).
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Figur 40: The graph in a neighbourhood of the point (0, 0).

Second method. As f ∈ C∞, we get by computation,

f(x, y) = 2 cosh(x + y) − exy, f(0, 0) = 1,

f ′
x(x, y) = 2 sinh(x + y) − y exy, f ′

x(0, 0) = 0,

f ′
y(x, y) = 2 sinh(x + y) − x exy, f ′

y(0, 0) = 0.

It follows that (0, 0) is a stationary point. Furthermore,

f ′′
xx(x, y) = 2 cosh(x + y) − y2exy, f ′′

xx(0, 0) = 2,

f ′′
xy(x, y) = 2 cosh(x + y) − xyexy − exy, f ′′

xy(0, 0) = 1,

f ′′
yy(x, y) = 2 cosh(x + y) − x2exy, f ′′

yy(0, 0) = 2.

Since rt = 4 > 1 = s2, and r, t > 0, we conclude that we have a local minimum.

Remark. Because

f(x, x) = 2 cosh(2x) − exp(x2) → −∞ for x → +∞,

the minimum above cannot be global.

We have e.g.

f(x, 0) = 2 cosh x − 1 → +∞ for x → +∞,

and since f is continuous on the connected set R
2, the range is f(R2) = R.
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Eksempel 4.10 Given the function

f(x, y) = xy − y2 − 2 ln x, (x, y) ∈ D,

where

D = {(x, y) ∈ R
2 | x > 0}.

1) Find the approximating polynomial of at most second degree of the function f , where (x0, y0) =
(2, 1) is used as point of expansion.

2) Check if the function f has an extremum at the point (2, 1), and indicate its type if it is an
extremum.

A Approximating polynomials; extremum.

D Apply a series expansion from (2, 1), or alternatively the standard method by calculating the Taylor
coefficients.

I First variant. Translate the coordinate system by

(x, y) = (x1 + 2, y1 + 1).

Then by insertion and a series expansion for ln(1 + u),

f(x, y) = xy − y2 − 2 lnx

= (x1 + 2)(y1 + 1) − (y1 + 1)2 − 2 ln(2 + x1)

= 2 + x1 + 2y1 + x1y1 − y2
1 − 2y1 − 1 − 2 ln 2 − 2 ln

(
1 +

x1

2

)
= 1 − 2 ln 2 + x1 + x1y1 − y2

1 − 2
{

x1

2
− 1

2
x1 ∗ 2

4
+ · · ·

}

= 1 − 2 ln 2 +
(x1

2

)2

+ 2 · x1

2
· y1 + y2

1 − 2y2
1 + · · ·

= 1 − 2 ln 2 +
{

1
2

x1 + y1

}2

− 2y2
1 + · · · .

The approximating polynomial of at most second degree is

P2(x, y) = 1 − 2 ln 2 +
1
4

(x − 2)2 + (x − 2)(y − 1) − (y − 1)2

= 1 − 2 ln 2 +
1
4
{(x − 2) + 2(y − 1)}2 − (y − 1)2.

As the first derivatives are zero, (2, 1) is a stationary point. It follows from the terms of second
degree that (2, 1) is not an extremum.
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Second variant. By straightforward computations,

f(x, y) = xy − y2 − 2 ln x, f(2, 1) = 1 − 2 ln 2,

f ′
x(x, y) = y − 2

x
, f ′

x(2, 1) = 0,

f ′
y(x, y) = x − 2y, f ′

y(2, 1) = 0,

f ′′
xx(x, y) =

2
x2

, r = f ′′
xx(2, 1) =

1
2
,

f ′′
xy(x, y) = 1, s = f ′′

xy(2, 1) = 1,

f ′′
yy(x, y) = −2, t = f ′′

yy(2, 1) = −2.

 Extremum (two variables)
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The approximating polynomial of at most second degree is

P2(x, y) = 1 − 2 ln 2 +
1
4

(x − 2)2 + (x − 2)(y − 1) − (y − 1)2.

As

f ′
x(2, 1) = f ′

y(2, 1) = 0,

we see that (2, 1) is a stationary point.

As rt < 0, there is no extremum at (2, 1).

Eksempel 4.11 Given the function

f(x, y) = 2x3 + 27x2 − 60xy + 75y2, (x, y) ∈ R
2.

1) Find the stationary points of the function.

2) Check for each of the stationary points if f has an extremum; when this is the case one should
indicate its type.

3) Find the range f(R2) of the function.

A Stationary points; extremum; range.

D Solve the equations of the stationary points. Check the behaviour of the function in a neighbourhood
of the stationary points. Finally, consider the restriction of f to the X axis.

I 1) The equations of the stationary points are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂f

∂x
= 6x2 + 54x − 60y = 0, dvs. x2 + 9x − 10y = 0,

∂f

∂y
= −60x + 150y = 0, dvs. −4x + 10y = 0.

We get by an addition that x2 + 5x = 0, so either x = 0 or x = −5. By insertion into the
latter equation we obtain the points (0, 0) and (−5,−2). These are also satisfying the former
equation, so the stationary points are (0, 0) and (−5,−2).

2) a) The value at (0, 0) is f(0, 0) = 0, and the approximating polynomial of at most second
degree is

P2(x, y) = 27x2 − 60xy + 75y2

= 2x2 + 25x2 − 60xy + 36y2 + 39y2

= 2x2 + (5x − 6y)2 + 39y2 > 0 for (x, y) 	= (0, 0),
hence f(x, y) has a local minimum at (0, 0).

Alternatively,

f ′′
xx(x, y) = 12x + 54, r = f ′′

xx(0, 0) = 54,

f ′′
xy(x, y) = −60, s = f ′′

xy(0, 0) = −60,

f ′′
yy(x, y) = 150, t = f ′′

yy(0, 0) = 150.
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We conclude from rt = 54 · 150 > (−60)2 = s2, and r, t > 0, that f(x, y) has a proper
minimum at(0, 0).

b) At (−5,−2) we get

r = 12 · (−5) + 54 = −6, s = −60, t = 150.

It follows from rt < 0 < s2 that there is no extremum at (−5,−2).

Alternatively we put (x, y) = (h − 5, k − 2), from which
f(x, y) = 2x3 + 27x2 − 60xy + 75y2

= 2(h−5)3 + 27(h−5)2 − 60(h−5)(k−2) + 75(k−2)2

= 2
{
h3 − 15h2 + 75h − 125

}
+ 27{h2 − 10h + 25}

−60{hk − 2h − 5k + 10} + 75
{
k2 − 4k + 4

}
= 2h3 +

{
−3h2 − 60hk + 75k2

}
+ 125.

The approximating polynomial of at most second degree in (h, k) is

P2(h, k) = −3h2 − 60hk + 75k2 + 125.

Since this expression attains values both > and < 125 in any neighbourhood of (h, k) =
(0, 0), it follows that (−5,−2) is not an extremum.

3) By taking the restriction of f to the X axis we get

ϕ(x) = f(x, 0) = 2x3 + 27x2 = x2{2x + 27}, x ∈ R.

Since already ϕ(R) = R, we conclude that

f(R2) = R.

Eksempel 4.12 Given the point set

A = {(x, y) ∈ R
2 | −4 ≤ x ≤ 4, 16 − 6y ≤ x2 + y2 ≤ 16}.

1. Sketch A, and show that the boundary ∂A consists of two circular arcs.

We shall also consider the function

f(x, y) =
y + 8

x2 + y2 + 12
, (x, y) ∈ A.

2. Show that the function f does not have a stationary point in the interior of A.

3. Find the range f(A) of the function.

A Range of a continuous function over a closed and bounded (i.e. compact) and connected set.

D Follow the guidelines and apply the main theorems.
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0

1

2

3

4

–4 –2 2 4

Figur 41: The domain A.

I 1) It follows immediately from x2 + y2 ≤ 16 = 42 that A lies inside the disc of centrum (0, 0) and
radius 4.

We rearrange 16 − 6y ≤ x2 + y2 as

25 = x2 + y2 + 6y + 9 = z2 + (y + 3)2.

Then we can see that A lies outside the disc of centrum (0,−3) and radius 5.

The domain is the half moon shaped region on the figure. It is closed and bounded and con-
nected. The boundary clearly consists of two circular arcs which intersect at the points (−4, 0)
and (4, 0).

2) The stationary points, if any, shall fulfil the equations

∂f

∂x
= − 2x(y+8)

(x2+y2+12)2
= 0, i.e. x = 0 or y = −8,

∂f

∂y
=

(x2+y2+12) · 1−2y(y+8)
(x2+y212)2

=
x2−y2−16y+12
(x2+y2+12)2

= 0.

Here y = −8 is not possible in A, so we get x = 0 from the first equation. When this put into
the second equation we get after a reduction that

y2 + 16y − 12 = 0, from which y = −8 ±
√

76.

The line x = 0 intersects A in the interval [2, 4] on the Y axis. Since

−8 ±
√

76 ≤ −8 +
√

76 < −8 +
√

81 = −8 + 9 = 1 < 2,

neither of the two candidates (0,−8 ±
√

76) (on the Y axis) lie in A, and f does not have a
stationary point in A.

3) Since f is continuous on A, and A is closed and bounded, it follows from the second main
theorem for continuous functions that the range f(A) is closed and bounded.

Since A is also connected, cf. the figure, if follows from the first main theorem for continuous
functions, that the range is connected.

 Extremum (two variables)
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Since f(A) ⊂ R, it follows from the above that f(A) is a closed interval, i.e.

f(A) = [M,S],

where M denotes the minimum and S denotes the maximum of f in A, because these exist
according to the second main theorem.

The maximum and the minimum must be found among the values at

a) the exceptional points (where f is not differentiable; there are none of them here),
b) the stationary points (none of the either),
c) the points on the boundary.

It follows that both the maximum and the minimum shall be found on the boundary.

Investigation of the boundary. The boundary is naturally split up into

a) x2 + y2 = 16, where y ∈ [0, 4], (cf. the figure),
b) x2 + (y + 3)2 = 25, i.e. x2 = 25 − (y + 3)2, where y ∈ [0, 2].

Now, x only occurs in the form x2 in f(x, y). It is therefore natural to eliminate x2 and use y
as a parameter.
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a) The restriction of f(x, y) to x2 + y2 = 16, y ∈ [0, 4], is given by

g(y) =
y + 8
28

, y ∈ [0+, 4].

Clearly, g(y) is increasing in this interval, so the candidates are

g(0) = f(±4, 0) =
8
28

=
2
7
, g(4) = f(0, 4) =

12
28

=
3
7
.

b) The restriction of f(x, y) to x2 + (y + 3)2 = 25, y ∈ [0, 2], is

h(y) =
y+8

37+y2−(y+3)2
=

y+8
28−6y

, y ∈ [0, 2].

Both the numerator and the denominator are positive in the given interval. Furthermore,
when y increases, then the numerator increases too, while the denominator decreases. Hence,
h(y) is increasing with the values at the end points

h(0) = f(±4, 0) =
2
7
, h(2) =

10
16

=
5
8
.

Alternatively,

h′(y) =
(28−y2−6y) · 1−(y+8)(−2y−6)

(28−y2−6y)2
=

y2+28y+76
(28−y2−6y)2

> 0 for y ∈ [0, 2],

thus h(y) is increasing.

By a numerical comparison we get M =
2
7

and S =
5
8
, so the range is

f(A) =
[
2
7

,
5
8

]
.
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5 Extrema (three or more variables)

Eksempel 5.1 Find in each of the following cases the stationary points of the given function

f : R
3 → R.

Then check if f in these points has an extremum; whenever this is the case check if it is a maximum
or a minimum.

1) f(x, y, z) = x2 + y2 + z2 + xyz.

2) f(x, y, z) = x3 + y3 + z3 + xyz.

3) f(x, y, z) = x4 + y4 + z4 − 4xyz.

4) f(x, y, z) = x cos z + y2.

5) f(x, y, z) = exp(xy + yz + zx).

6) f(x, y, z) = y3 + ln(1 + x2 + z2).

A Stationary points; extrema in three variables.

D Compute
∂f

∂x
,

∂f

∂y
,

∂f

∂z
; then find the stationary points; finally check if there are any extrema.

I 1) The equations of the stationary points are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
= 2x + yz = 0,

∂f

∂y
= 2y + xz = 0,

∂f

∂z
= 2z + xy = 0,

i.e.

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x = −yz

2
,

y = −xz

2
,

z = −xy

2
.

When we multiply the equations of (5) we get a necessary condition of stationary points,

xyz = −1
8
(xyz)2, i.e. xyz{xyz + 8} = 0.

Then either xyz = 0 or xyz = −8 = (−2)3.
a) If xyz = 0, then one of the factors must be 0. Assume that x = 0. Then it follows from (5)

that y = z = 0.
Analogously, if we assume that y = 0 or z = 0.

Summarizing we get in this case that (0, 0, 0) is a stationary point.
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b) If xyz 	= 0, then all three factors are 	= 0. By insertion of the latter equation into (5), we
get

y = −1
2

xz = +
1
4

x2y,

hence x2 = 4.
Analogously we get y2 = 4 and z2 = 4, so the candidates shall be found among (±2,±2,±2)
with all possible combinations of the signs. By a simple test in (5) we see that we in this
case get the stationary points

(2, 2,−2), (2,−2, 2), (−2, 2, 2), (−2,−2,−2).

Summarizing we have the five stationary points

(0, 0, 0), (2, 2,−2), (2,−2, 2), (−2, 2, 2), (−2,−2,−2).

i) The point (0, 0, 0) is a proper minimum, because

P2(x, y, z) = x2 + y2 + z2

is positive in any dotted neighbourhood of (0, 0, 0).

Insertion. Notice that

∂2f

∂x2
=

∂2f

∂y2
=

∂2f

∂z2
= 2,

∂2f

∂x∂y
= z,

∂2f

∂y∂z
= x,

∂2f

∂z∂x
= y,

so the approximating polynomial P2(x, y, z) from an expansion point (x0, y0, z0) is
P2(x, y, z) = f(x0, y0, z0) + (x − x0)2 + (y − y0)2 + (x − z0)2

+z0(x−x0)(y−y0)+x0(y−y0)(z−z0)
+y0(z−z0)(x−x0).

When |x0| = |y0| = |z0| = 2 and x0y0z0 = −8, then either one or three of the factors
are negative. ♦

ii) Assume that only one of the factors is negative. Due to the symmetry we can assume
that z0 = −2, hence x0 = y0 = 2. Then

P2(x, y, z) = f(x0, y0, z0) + (x − x0)2 + (y − y0)2 + (z − z0)2

+2(x − x0)(y − y0) + 2(y − y0)(z − z0)
+ 2(x − x0)(z − z0) − 4(x − x0)(y − y0)

= f(x0, y0, z0) + {(x − x0)2 + (y − y0)2 + (z − z0)}2

−4(x − x0)(y − y0).
In the plane z − z0 = −(x − x0) − (y − y0) the term

−4(x − x0)(y − y0)

is both positive and negative in any neighbourhood of (x0, y0), so (x0, y0, z0) = (2, 2,−2)
is not an extremum.
It follows from the symmetry that neither (2,−2, 2) nor (−2, 2, 2) are extrema.
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iii) If (x0, y0, z0) = (−2,−2,−2), then

P2(x, y, z) = f(−2,−2,−2) + (x + 2)2 + (y + 2)2 + (z + 2)2

−2(x + 2)(y + 2) − 2(y + 2)(z + 2) − 2(z + 2)(x + 2)

= f(−2,−2,−2) + (x + 2)2 + (y + 2)2 + (z + 2)2

−2(x + 2)(y + 2) + 2(y + 2)(z + 2) − 2(z + 2)(x + 2) − 4(y + 2)(z + 2)

= f(−2,−2,−2) + {−(x + 2) + (y + 2) + (z + 2)}2 − 4(y + 2)(z + 2).

We see that in the plane x + 2 = (y + 2) + (z + 2) the term −4(y + 2)(z + 2) is both
positive and negative in any neighbourhood of (y, z) = (−2,−2), so (−2,−2,−2) is not
an extremum.

The conclusion is that only (0, 0, 0) is an extremum (a proper minimum).

 Extrema (three or more variables)
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2) In this case,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
= 3x2 + yz = 0,

∂f

∂y
= 3y2 + xz = 0,

∂f

∂z
= 3z2 + xy = 0,

i.e.

(6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yz = −3x2 ≤ 0,

xz = −3y2 ≤ 0,

xy = −3z2 ≤ 0.

From (6) we get the necessary condition

(yz) · (zx) · (xy) = (xyz)2 = −27(xyz)2

for a stationary point. The only possibility is xyz = 0. Since e.g. x = 0 implies that y = z = 0,
and analogously for y = 0 and z = 0, it follows that (0, 0, 0) is the only stationary point.

There is no extremum at(0, 0, 0), because e.g. f(x, 0, 0) = x3 is both positive and negative in
any neighbourhood of x0 = 0.

3) Here

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
= 4x3 − 4yz = 0,

∂f

∂y
= 4y3 − 4xz = 0,

∂f

∂z
= 4z3 − 4xyz = 0,

so

(7)

⎧⎨
⎩

yz = x3,
xz = y3,
xy = z3.

We get the following necessary condition for the stationary points

(yz) · (xz) · (xy) = (xyz)2 = (xyz)3,

i.e. either xyz = 0 or xyz = 1.

a) If xyz = 0, then e.g. x = 0, which immediately implies that y = z = 0. Analogously, if we
assume y = 0 or z = 0. In this case we get the stationary point (0, 0, 0).
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b) If xyz = 1, it follows from the first equation of (7) that

xyz = 1 = x4,

i.e. x = ±1. Analogously we get y = ±1 and z = ±1. Therefore, the stationary points
should be searched among (±1,±1,±1) with all possible eight combinations of the signs.
By insertion into (7), i.e. testing these points, we find the stationary points

(1, 1, 1), (1,−1, 1), (−1, 1,−1), (−1,−1, 1).

Summarizing we find that the function has five stationary points,

(0, 0, 0), (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

We shall now check each of them considering extremum.

a) The point (0, 0, 0) is not an extremum, because −4xyz is the dominating term in a dotted
neighbourhood of (0, 0, 0), and −4xyz is both positive and negative in any neighbourhood
of (0, 0, 0).

Insertion. It follows from

∂2f

∂x2
= 12x2,

∂2f

∂y2
= 12y2,

∂2f

∂z2
= 12z2,

∂2f

∂x∂y
= −4z,

∂2f

∂y∂z
= −4x,

∂2f

∂x∂z
= −4y,

that the approximating polynomial at a stationary point (x0, y0, z0) 	= (0, 0, 0) [of course
also at (0, 0, 0), but this is not relevant here] is given by

P2(x, y, z) = f(x0, y0, z0)+6{x2
0(x−x0)2+y2

0(y−y0)2+z2
0(z−z0)2}

−4z0(x − x0)(y − y0) − 4x0(y − y0)(z − z0) − 4y0(x − x0)(z − z0).
When |x0| = |y0| = |z0| = 1, this is written

P2(x, y, z) = f(x0, y0, z0) + 2{(x − x0)2 + (y − y0)2 + (z − z0)2}
+2
{
[z0(x − x0)]2 − 2z0(x − x0)(y − y0) + (y − y0)2

}
+2
{
[x0(y − y0)]2 − 2x0(y − y0)(z − z0) + (z − z0)2

}
+2
{
[y0(x − x0)]2 − 2y0(x − x0)(z − z0) + (x − x0)2

}
,

where we have used that. By a rearrangement,
P2(x, y, z) − f(x0, y0, z0)

= 2
{
(x − x0)2 + (y − y0)2 + (z − z0)2

}
+ 2{z0(x − x0) − (y − y0)}2(8)

+2{x0(y − y0) − (z − z0)}2 + 2{y0(x − x0) − (z − z0)}2.

b) In the latter four stationary points the approximating polynomial is given by (8). It follows
from this expression that they are all proper minima.

Summarizing we get that

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)

are all proper minima, while (0, 0, 0) is not an extremum.
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4) The equations of the stationary points are

∂f

∂x
= cos z = 0,

∂f

∂y
= 2y = 0,

∂f

∂z
= −x sin z = 0,

so accordingly z =
π

2
+ pπ, p ∈ Z, y = 0 and x = 0, and the stationary points are

(
0, 0,

π

2
+ pπ

)
, p ∈ Z.

In all of these points, f
(
0, 0,

π

2
+ pπ

)
= 0. Since the restriction

f(x, 0, z) = x cos z

is both positive and negative in any neighbourhood of any such point, none of them is an
extremum.

5) If f(x, y, z) = exp(xy +yz + zx), then f(x, y, z) > 0, and the equations of the stationary points
are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
= (y + z)f(x, y, z) = 0,

∂f

∂y
= (z + x)f(x, y, z) = 0,

∂f

∂z
= (x + y)f(x, y, z) = 0,

i.e.

(9)

⎧⎨
⎩

y + z = 0,
z + x = 0,
x + y = 0.

The system (9) has only the solution x = y = z = 0, so (0, 0, 0) is the only stationary point.

By a Taylor expansion,

f(x, y, z) = exp(xy + yz + zx)
= 1 + xy + yz + xz + (x2 + y2 + z2)ε(x, y, z),

where ε(x, y, z) → 0 for (x, y, z) → (0, 0, 0). Hence

P2(x, y, z) = 1 + xy + yz + zx,

where e.g.

P2(x, y, 0) − 1 = xy

attains both positive and negative values in any neighbourhood of (x, y) = (0, 0). Thus there
is no extremum at (0, 0, 0).

 Extrema (three or more variables)
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6) Ifr f(x, y, z) = y3 + ln(1 + x2 + z2), the wquations of the stationary points are

∂f

∂x
=

2x
1 + x2 + z2

= 0,
∂f

∂y
= 3y2 = 0,

∂f

∂z
=

2z
1 + x2 + z2

= 0.

It follows that (0, 0, 0) is the only stationary point. The restriction f(0, y, 0) = y3 is both
positive and negative in any neighbourhood of y0 = 0, so there is no extremum at (0, 0, 0).

Eksempel 5.2 Examine in the same way as in Example 5.1 the function

f(x, y, z) = xyz(4a − x − y − z), (x, y, z) ∈ R
3
+.

A Stationary points; extrema.

D Find the possible stationary points; check if they are extrema.

I The function can by continuity be extended to its zero set. This is the surface of the tetrahedron on
the figure, and it is obvious that f(x, y, z) > 0 in the open tetrahedron. The function must have
a maximum in the tetrahedron, according to the second main theorem for continuous functions,
and because f(x, y, z) is of class C∞, this maximum can only be attained at a stationary point in
the interior of the tetrahedron.

 Extrema (three or more variables)
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1

2

3

4

1

2

3

4

y

1

2

3

4

x

The equations of the stationary points are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
= yz(4a − x − y − z) − xyz = yz(4a − 2x − y − z) = 0,

∂f

∂y
= xz(4a − x − y − z) − xyz = xz(4a − x − 2y − z) = 0,

∂f

∂z
= xy(4a − x − y − 2z) = 0.

It follows from the assumptions x > 0, y > 0 and z > 0 that these equations are equivalent to⎧⎨
⎩

x = 4a − x − y − z,
y = 4a − x − y − z,
z = 4a − x − y − z,

and it follows immediately that

x = 4a − x − y − z = y = z = a.

Hence, (a, a, a) is the only stationary point in the first octant.

It follows from the application of the second main theorem above that we have a maximum at
(a, a, a), and the value of the function is here

f(a, a, a) = a4.

Alternatively we compute

∂2f

∂x2
= −2yz,

∂2f

∂y2
= −2xz,

∂2f

∂z2
= −2xy,

∂2f

∂x∂y
= z(4a − 2x − y − z) − yz = z(4a − 2x − 2y − z),

∂2f

∂y∂z
= x(4a − x − 2y − 2a),

∂2f

∂z∂x
= y(4a − 2x − y − 2z),

 Extrema (three or more variables)
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hence

∂2f

∂x2
(a, a, a) =

∂2f

∂y2
(a, a, a) =

∂2f

∂z2
(a, a, a) = −2a2,

∂2f

∂y∂z
(a, a, a) =

∂2f

∂x∂z
(a, a, a) =

∂2f

∂x∂z
(a, a, a) = −a2.

Now f(a, a, a) = a4, so

P2(x, y, z) = a4 − a2
{
(x − a)2 + (y − a)2 + (z − a)2

+(x − a)(y − a) + (y − a)(z − a) + (z − a)(x − a)}

= a4 − a2

2
{
(x − a)2 + (y − a)2 + (z − a)2

+[(x − a) + (y − a) + (z − a)]2
}

,

and we see that (a, a, a) is a maximum.

Eksempel 5.3 Let f : R
k → R be a polynomial of second degree. Prove that f has none or one or

infinitely many stationary points.
Then give for k = 2 examples of all three possibilities.

A Stationary points.

D Use some Linear Algebra on the system of equations of the stationary points.

I A general polynomial of second degree in R
k is of the form

f(x) =
k∑

i,j=1

aijxixj +
k∑

i=1

bixi + c.

The equations of the stationary points are

∂f

∂xm
=

k∑
i=1

(aim + ami)xi + bm = 0, m = 1, . . . , k,

i.e. a system of k linear equations in k unknowns. It is known from Linear Algebra that such a
system of equations has none or one or an infinity of solutions, and the claim is proved.

Let k = 2, and denote the variables by (x, y).

If f(x, y) = x2 + y2, we clearly have (0, 0) as the only stationary point.

If f(x, y) = y2, then we clearly have infinitely many stationary points, namely (x, 0) for x ∈ R.

Finally, let f(x, y) = (x + y)2 + x − y. Then the equations of the de stationary points are

∂f

∂x
= 2(x + y) + 1 = 0,

∂f

∂y
= 2(x + y) − 1 = 0.

 Extrema (three or more variables)
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This system of equations clearly has no solution.

A simpler system is

f(x, y) = x2 + y,

where
∂f

∂y
= 1 	= 0 for every (x, y). The structure is the same as in the example above. The

difference is that both x2 and y2 occur in the former example, so the polynomial is of second
degree in both x and y. This is not the case in the latter example.

 Extrema (three or more variables)
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